DM545/DM871
 Linear and Integer Programming

MILP in Spreadsheets

Marco Chiarandini

Department of Mathematics \& Computer Science
University of Southern Denmark

Outline

1. Example 1: Production Planning
2. Example 2: Diet Problem
3. Example: Budget Allocation
4. Example 4: Network Problem
5. Example 1: Production Planning
6. Example 2: Diet Problem
7. Example: Budget Allocation
8. Example 4: Network Problem

Production Planning

Mathematical Model:

$$
\begin{aligned}
\max 16 x_{1}+10 x_{2} & \\
2 x_{1}+2 x_{2} & \leq 8 \\
2 x_{1}+x_{2} & \leq 6 \\
x_{1} & \geq 0 \\
x_{2} & \geq 0
\end{aligned}
$$

General Model

$$
\begin{aligned}
& \max \sum_{j=1}^{n} c_{j} x_{j} \\
& \sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i}, i=1, \ldots, m \\
& x_{j} \geq 0, j=1, \ldots, n
\end{aligned}
$$

$$
\begin{aligned}
\max c^{\top} x & \\
A x & \leq b \\
x & \geq 0
\end{aligned}
$$

$$
x \in \mathbb{R}^{n}, c \in \mathbb{R}^{n}, A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}
$$

$$
\begin{aligned}
\max 16 x_{1}+10 x_{2} & \\
2 x_{1}+2 x_{2} & \leq 8 \\
2 x_{1}+x_{2} & \leq 6 \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

$$
x_{1}, x_{2} \geq 0
$$

Vector and Matrices in Excel

$$
\sum_{j=1}^{n} c_{j}=c_{1}+c_{2}+\ldots+c_{n}
$$

SUM(B5: B14)

Scalar product

$$
\begin{aligned}
\mathbf{u} \cdot \mathbf{v} & =u_{1} v_{1}+u_{2} v_{2}+\ldots+u_{n} v_{n} \\
& =\sum_{j=1}^{n} u_{j} v_{j}
\end{aligned}
$$

SUMPRODUCT(B5: B14, C5: C14)

Outline

1. Example 1: Production Planning
2. Example 2: Diet Problem
3. Example: Budget Allocation
4. Example 4: Network Problem

The Diet Problem (Blending Problems)

- Select a set of foods that will satisfy a set of daily nutritional requirement at minimum cost.
- Motivated in the 1930 s and 1940 s by US army.
- Formulated as a linear programming problem by George Stigler
- First linear programming problem
- (programming intended as planning not computer code)

min cost/weight
subject to nutrition requirements:
eat enough but not too much of Vitamin A eat enough but not too much of Sodium eat enough but not too much of Calories

The Diet Problem

Suppose there are:

- 3 foods available, corn, milk, and bread,
- there are restrictions on the number of calories (between 2000 and 2250) and the amount of Vitamin A (between 5000 and 50,000)

Food	Corn	2% Milk	Wheat bread
Vitamin A	107	500	0
Calories	72	121	65
Cost per serving	$\$ 0.18$	$\$ 0.23$	$\$ 0.05$

Rescaled

Food	Corn	2\% Milk	Wheat bread
Vitamin A	983.33	2173.91	0
Calories	400	526.08	1300
Cost per serving	$\$ 1$	$\$ 1$	$\$ 1$

$$
\begin{aligned}
\min \sum_{i \in F} c_{i} x_{i} & \\
\sum_{i \in F} a_{i j} x_{i} \geq N_{\operatorname{minj} j}, & \forall j \in N \\
\sum_{i \in F} a_{i j} x_{i} \leq N_{\max j}, & \forall j \in N \\
x_{i} \geq F_{\min i}, & \forall i \in F \\
x_{i} \leq F_{\max i}, & \forall i \in F
\end{aligned}
$$

The History of Stigler's Diet Problem

- The linear program consisted of 9 equations in 77 variables
- Stigler, guessed an optimal solution using a heuristic method
- In 1947, the National Bureau of Standards used the newly developed simplex method to solve Stigler's model.
It took 9 clerks using hand-operated desk calculators 120 man days to solve for the optimal solution

1. Example 1: Production Planning
2. Example 2: Diet Problem
3. Example: Budget Allocation
4. Example 4: Network Problem

Budget Allocation - Exercise 6 of Sheet 3

- A company has six different opportunities to invest money.
- Each opportunity requires a certain investment over a period of 6 years or less.

Expected Investment Cash Flows and Net Present Value							
	Opp. 1	Opp. 2	Opp. 3	Opp. 4	Opp. 5	Opp. 6	
Year 1	$-\$ 5.00$	$-\$ 9.00$	$-\$ 12.00$	$-\$ 7.00$	$-\$ 20.00$	$-\$ 18.00$	
Year 2	$-\$ 6.00$	$-\$ 6.00$	$-\$ 10.00$	$-\$ 5.00$	$\$ 6.00$	$-\$ 15.00$	
Year 3	$-\$ 16.00$	$\$ 6.10$	$-\$ 5.00$	$-\$ 20.00$	$\$ 6.00$	$-\$ 10.00$	
Year 4	$\$ 12.00$	$\$ 4.00$	$-\$ 5.00$	$-\$ 10.00$	$\$ 6.00$	$-\$ 10.00$	
Year 5	$\$ 14.00$	$\$ 5.00$	$\$ 25.00$	$-\$ 15.00$	$\$ 6.00$	$\$ 35.00$	
Year 6	$\$ 15.00$	$\$ 5.00$	$\$ 15.00$	$\$ 75.00$	$\$ 6.00$	$\$ 35.00$	
NPV	$\$ 8.01$	$\$ 2.20$	$\$ 1.85$	$\$ 7.51$	$\$ 5.69$	$\$ 5.93$	

- The company has an investment budget that needs to be met for each year.
- It also has the wish of investing in those opportunities that maximize the combined Net Present Value (NPV) after the 6th year.

Digression: What is the Net Present Value?

- P : value of the original payment presently due
- the debtor wants to delay the payment for t years,
- let r be the market rate of return that the creditor would obtain from a similar investment asset
- the future value of P is $F=P(1+r)^{t}$

Viceversa, consider the task of finding:

- the present value P of $F=\$ 100$ that will be received in five years, or equivalently,
- which amount of money today will grow to $F=\$ 100$ in five years when subject to a constant discount rate? $P=\frac{F}{(1+r)^{t}}$
Assuming a 5% per year interest rate, it follows that

$$
P=\frac{F}{(1+r)^{t}}=\frac{\$ 100}{(1+0.05)^{5}}=\$ 78.35 .
$$

Budget Allocation

Net Present Value calculation:
for each opportunity we calculate the NPV at time zero (the time of decision) as:

$$
P_{0}=\sum_{t=1}^{5} \frac{F_{t}}{(1+0.05)^{5}}
$$

Expected Investment Cash Flows and Net Present Value							

Budget Allocation - Mathematical Model

- Let B_{t} be the budget available for investments during the years $t=1 . .5$.
- Let $a_{t j}$ be the cash flow for opportunity j and c_{j} its NPV
- Task: choose a set of opportunities such that the budget is never exceeded and the expected return is maximized. Consider both the case of indivisible and divisible opportunities.

Variables $x_{j}=1$ if opportunity j is selected and $x_{j}=0$ otherwise, $j=1 . .6$
Objective

$$
\max \sum_{j=1}^{6} c_{j} x_{j}
$$

Constraints

$$
\sum_{j=1}^{6} a_{t j} x_{j}+B_{t} \geq 0 \quad \forall t=1 . .5
$$

Outline

1. Example 1: Production Planning
2. Example 2: Diet Problem
3. Example: Budget Allocation
4. Example 4: Network Problem

Min Cost Flow

A company produces the same product at two different factories, A and B, and then the product must be shipped to two warehouses, D and E, where either factory can supply either warehouse. A distribution center C can be used to collect the product from A and B before shipping it to E. The distribution network has the following allowed connections: $\{A D, A B, A C, B C, C E, D E, E D\}$ and there are costs and bounds on the amount of product to ship through the connections.

Minimum Cost Network Flows

Find cheapest flow through a network in order to satisfy demands at certain nodes from available supplier nodes.

Variables:

$$
x_{i j} \in \mathbb{Z}_{0}^{+}
$$

Objective:

$$
\min \sum_{i j \in A} c_{i j} x_{i j}
$$

Constraints: mass balance + flow bounds

$$
\begin{aligned}
& \sum_{j: i j \in A} x_{i j}-\sum_{j: j i \in A} x_{j i}=b(i) \quad \forall i \in V \\
& l_{i j} \leq x_{i j} \leq u_{i j}
\end{aligned}
$$

Example of mass balance constraints:

$$
x_{C E}-x_{A C}-x_{B C}=0
$$

In Matrix Form

i	$X_{e_{1}}$ $C_{e_{1}}$	$X_{e_{2}}$ $C_{e_{2}}$. . .	$x_{i j}$ $c_{i j}$		$X_{e_{m}}$ $C_{e_{m}}$		
1	1	.	. .	-	. .	.	$=$	b_{1}
2 1	-	\ldots	.	$=$	b_{2}
: 1	:	\because.					$=$:
i	-1	1	. .	.	$=$	b_{i}
: 1	:	\because					$=$:
j	.	.	\ldots	-1	. .	.	$=$	b_{j}
$\vdots 1$.	\bullet.					$=$:
$n \quad 1$							$=$	b_{n}
e_{1}	1						\leq	u_{1}
e_{2}		1					\leq	u_{2}
$\therefore 1$	\cdot	\bullet.					\leq	:
(i, j)				1			\leq	$u_{i j}$
: 1	:	\because					\leq	\vdots
e_{m}						1	\leq	u_{m}

Example 1: Production Planning Example 2: Diet Problem Example: Budget Allocation Example 4: Network Problem

N node arc incidence matrix

