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Solution:
Included.
Exercises with the symbol + are to be done at home before the class. Exercises with the symbol ∗

will be tackled in class and should be at least read at home. The remaining exercises are left for self
training after the exercise class.

Exercise 1∗ List all vertices of the polyhedron Ax ≤ b, x ≥ 0, characterized by the following matrices

A and b:

A =




2 0 1 −4
0 1 0 2
0 0 1 0



 b =




3
1
1





You are encouraged to use Python for carrying out the calculations.

Solution:

• Let denote the polyhedron in focus by P(A′, b′) = {x ∈ R4 | A′x = b′} = {x ∈ R4 | Ax = b, x ≥ 0},
where:

A′ :=
[
A
I

]
b′ :=

[
b
0

]

There are 3 + 4 constraints (the 3 of Ax ≤ b and the 4 of x ≥ 0) and 4 variables.

• An equivalent way to write the polyhedron P(A′, b′) is in its equational standard form P=(Ā, b) =
{x ∈ Rp | Āx = b, x ≥ 0}, setting p = n + m. We showed in class how go from one representation
to the other by introducing slack variables.
In our specific case:

Ā =




2 0 1 −4 1 0 0
0 1 0 2 0 1 0
0 0 1 0 0 0 1





Note that we do not include the x ≥ 0 constraints in Ā, since we include them in the definition of
feasible basic solutions and hence they are handled implicitly there.

• We saw that in the context of P=(Ā, b) the concept of geometrical vertices of the polyhedron
corresponds to the concept of basic feasible solutions.

• Hence, to determine the vertices of the polyhedron P(A′, b′) we need to enumerate all basic
solutions of P=(Ā, b).

• Recall that a basic feasible solution is given by a subset B of size m of the indices of columns of
the matrix Ā and is such that AB , the so-called basis matrix, is non-singular and x̄B = A−1

B b ≥ 0
and x̄N = 0. To determine all bases we need to generate all combinations of size m of the p
columns. In our case, m = 3 and p = 7. We write a python script to do the calculations for us:

import numpy as np

import numpy.linalg as la

import itertools as it

A = np.array([[2,0,1,-4],[0,1,0,2],[0,0,1,0]])

I = np.identity(3)
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A = np.concatenate([A,I],axis=1)

print(A)

b = np.array([3,1,1])

for e in it.combinations(range(7),3):

if la.det(A[:,e]) != 0:

x = np.dot(la.inv(A[:,e]),b)

if (x>=0).all:

print(f"basis: {str(e)} --> values: {str(x)}")

else:

print(f"basis: {str(e)} --> infeasible")

else:

print(f"basis: {str(e)} --> not invertible, not a point")

The output of the code snippet is omitted here for reasons of space but in the take-home assginments
it must be reported.

We can reason on the geometrical representation of P=(Ā, b). Let m be the number of constraints, n
the number of original variables and p > n the number of variables in the system of linear equations
Āx̄ = b. Hence, Ā ∈ Rm×p, x̄ ∈ Rp, b ∈ Rm.
Recall from linear algebra that:

• the system admits solutions if and only if: rank(Ā) = rank(Ā | b).

• If p < m then rank(Ā) ≤ n the system is overdetermined and likely infeasible, unless rank(Ā) =
rank(Ā | b), in which case some constraint(s) are linearly dependent.

• Linearly dependent constraints can be removed as they are redundant.

• We can assume p > m since we introduced a slack variable for each constraint (hence, p = n+m >
m).

• Since we assume to have removed linearly dependent constraints, it is rank(Ā) = m. Consequently
it must be rank(Ā) = rank(Ā | b).

• Under the assumption that p > m the system is underdetermined. The solutions have p − m
variables set free and the solution space has dimension p − m. The simplex is the intersection
between this space of Āx = b and the positive orthant x ≥ 0.

• Algebraically, the vertices of the simplex P= correspond to the basic feasible solutions of the linear
system Āx̄ = b.

• The simplex P= is the set of points that can be described by a convex combination of these basic
feasible solutions.

• The vertices of this simplex in Rp are the vertices of the polyhedron defined by A′ and b′, P(A′, b′).

• There can be
(p

m
)

vertices in P= but not all of them are linearly independent with respect to the
other vertices. Some of these basic feasible solutions may indicate the same geometrical vertex.
When is that the case?

Exercise 2+ Simplex method
This is part of the first exercise (Opgave 1) in the written exam of 2008.
Consider the following linear programming problem (P1)

maximize 2x1 + 4x2 − x3

subject to 2x1 − x3 ≤ 6
3x2 − x3 ≤ 9
x1 + x2 ≤ 4
x1, x2, x3 ≥ 0

2



DM545/DM871 – Spring 2023 Assignment Sheet

• Rewrite the problem in equational standard form adding the slack variables x4, x5, x6 to the three
constraints above, respectively, and write the first simplex tableau with x4, x5, x6 as basic solution.

Solution:

We write the initial tableaux: 



2 0 −1 1 0 0 0 6
0 3 −1 0 1 0 0 9
1 1 0 0 0 1 0 4
2 4 −1 0 0 0 1 0





Or also:

|--------+--------+--------+--------+--------+--------+--------+--------+

| x1 | x2 | x3 | x4 | x5 | x6 | -z | b |

|--------+--------+--------+--------+--------+--------+--------+--------+

| 2 | 0 | -1 | 1 | 0 | 0 | 0 | 6 |

| 0 | 3 | -1 | 0 | 1 | 0 | 0 | 9 |

| 1 | 1 | 0 | 0 | 0 | 1 | 0 | 4 |

|--------+--------+--------+--------+--------+--------+--------+--------+

| 2 | 4 | -1 | 0 | 0 | 0 | 1 | 0 |

|--------+--------+--------+--------+--------+--------+--------+--------+

• Argue that x2 can be brought in the basis with advantage and perform one pivot iteration that
brings x2 into the basic solution.

Solution:

x2 has positive reduced cost, hence worth bringing up.
pivot column: 2 pivot row: 2 pivot: 3





2 0 −1 1 0 0 0 6
0 1 −1/3 0 1/3 0 0 3
1 0 1/3 0 −1/3 1 0 1
2 0 1/3 0 −4/3 0 1 −12





• After another pivot iteration, it is x1 that can be brought with advantage in the basis (you do not
have to perform this iteration), reaching the following simplex tableau:

|--------+--------+--------+--------+--------+--------+--------+--------+

| x1 | x2 | x3 | x4 | x5 | x6 | -z | b |

|--------+--------+--------+--------+--------+--------+--------+--------+

| 0 | 0 | -5/3 | 1 | 2/3 | -2 | 0 | 4 |

| 0 | 1 | -1/3 | 0 | 1/3 | 0 | 0 | 3 |

| 1 | 0 | 1/3 | 0 | -1/3 | 1 | 0 | 1 |

|--------+--------+--------+--------+--------+--------+--------+--------+

| 0 | 0 | -1/3 | 0 | -2/3 | -2 | 1 | -14 |

|--------+--------+--------+--------+--------+--------+--------+--------+

Argue that an optimal solution is found and give the solution together with its objective value.

Solution:
The optimal solution is found because all reduced costs are non-positive. The objective function value
is 14.
We show here for completeness all iterations of the simplex from the first tableau above:
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pivot column: 2

pivot row: 2

pivot: 3

|--------+--------+--------+--------+--------+--------+--------+--------+

| x1 | x2 | x3 | x4 | x5 | x6 | -z | b |

|--------+--------+--------+--------+--------+--------+--------+--------+

| 2 | 0 | -1 | 1 | 0 | 0 | 0 | 6 |

| 0 | 1 | -1/3 | 0 | 1/3 | 0 | 0 | 3 |

| 1 | 0 | 1/3 | 0 | -1/3 | 1 | 0 | 1 |

|--------+--------+--------+--------+--------+--------+--------+--------+

| 2 | 0 | 1/3 | 0 | -4/3 | 0 | 1 | -12 |

|--------+--------+--------+--------+--------+--------+--------+--------+

pivot column: 1

pivot row: 3

pivot: 1

|--------+--------+--------+--------+--------+--------+--------+--------+

| x1 | x2 | x3 | x4 | x5 | x6 | -z | b |

|--------+--------+--------+--------+--------+--------+--------+--------+

| 0 | 0 | -5/3 | 1 | 2/3 | -2 | 0 | 4 |

| 0 | 1 | -1/3 | 0 | 1/3 | 0 | 0 | 3 |

| 1 | 0 | 1/3 | 0 | -1/3 | 1 | 0 | 1 |

|--------+--------+--------+--------+--------+--------+--------+--------+

| 0 | 0 | -1/3 | 0 | -2/3 | -2 | 1 | -14 |

|--------+--------+--------+--------+--------+--------+--------+--------+

Exercise 3∗ Simplex method
Solve the following LP problem carrying out the simplex operations:

maximize 5x1 + 4x2 + 3x3
subject to 2x1 + 3x2 + x3 ≤ 5

4x1 + x2 + 2x3 ≤ 11
3x1 + 4x2 + 2x3 ≤ 8
x1, x2, x3 ≥ 0

You are free to use any of the two representations, tableau or dictionary.
You can also get help from Python. You find a tutorial in the external web page.

Solution:

%run utils

A=array([[2,f(3,1),1,1,0,0,0,5],[4,1,2,0,1,0,0,11],[3,4,2,0,0,1,0,8],[5,4,3,0,0,0,1,0]])

tableau(A)

# enough that one is a fraction to make all matrix of type fraction

# First simplex iteration

A[0,:] = f(1,2)*A[0,:]

A[1,:] = A[1,:]-f(4,1)*A[0,:]

A[2,:] = A[2,:]-f(3,1)*A[0,:]

A[3,:] = A[3,:]-f(5,1)*A[0,:]

tableau(A)

|--------+--------+--------+--------+--------+--------+--------+--------+

| x1 | x2 | x3 | x4 | x5 | x6 | -z | b |

|--------+--------+--------+--------+--------+--------+--------+--------+

| 2 | 3 | 1 | 1 | 0 | 0 | 0 | 5 |

| 4 | 1 | 2 | 0 | 1 | 0 | 0 | 11 |
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| 3 | 4 | 2 | 0 | 0 | 1 | 0 | 8 |

|--------+--------+--------+--------+--------+--------+--------+--------+

| 5 | 4 | 3 | 0 | 0 | 0 | 1 | 0 |

|--------+--------+--------+--------+--------+--------+--------+--------+

pivot column: 1

pivot row: 1

pivot: 2

|--------+--------+--------+--------+--------+--------+--------+--------+

| x1 | x2 | x3 | x4 | x5 | x6 | -z | b |

|--------+--------+--------+--------+--------+--------+--------+--------+

| 1 | 3/2 | 1/2 | 1/2 | 0 | 0 | 0 | 5/2 |

| 0 | -5 | 0 | -2 | 1 | 0 | 0 | 1 |

| 0 | -1/2 | 1/2 | -3/2 | 0 | 1 | 0 | 1/2 |

|--------+--------+--------+--------+--------+--------+--------+--------+

| 0 | -7/2 | 1/2 | -5/2 | 0 | 0 | 1 | -25/2 |

|--------+--------+--------+--------+--------+--------+--------+--------+

pivot column: 3

pivot row: 3

pivot: 1/2

|--------+--------+--------+--------+--------+--------+--------+--------+

| x1 | x2 | x3 | x4 | x5 | x6 | -z | b |

|--------+--------+--------+--------+--------+--------+--------+--------+

| 1 | 2 | 0 | 2 | 0 | -1 | 0 | 2 |

| 0 | -5 | 0 | -2 | 1 | 0 | 0 | 1 |

| 0 | -1 | 1 | -3 | 0 | 2 | 0 | 1 |

|--------+--------+--------+--------+--------+--------+--------+--------+

| 0 | -3 | 0 | -1 | 0 | -1 | 1 | -13 |

|--------+--------+--------+--------+--------+--------+--------+--------+

Exercise 4
Solve the following linear programming problem applying the simplex algorithm:

maximize 3x1 + 2x2
subject to x1 − 2x2 ≤ 1

x1 − x2 ≤ 2
2x1 − x2 ≤ 6
x1 ≤ 5
2x1 + x2 ≤ 16
x1 + x2 ≤ 12
x1 + 2x2 ≤ 21
x2 ≤ 10
x1, x2 ≥ 0.

[Hint: you can plot the feasibility region with one of the tools linked at the course web page: “Tools”
-> “Web applications on the simplex” -> “LP Simplex” and use the clairvoyant’s rule to minimize the
number of operations to carry out.]

Solution:
The initial solution of the simplex is at [0,0]. Then we can follow one of the two paths. The clairvoyant
rule says that we should choose the direction that minimizes the path. This can be achieved by taking
x2. This yields a path of 3 arcs. Taking instead x1 in the basis at the beginning would lead to a path of
length 6.

Exercise 5∗ Project Scheduling

5
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Figure 1: A network with activities on nodes for a small project with 6 activities. For each activity the
following data is given in that order from left to right: normal time, minimum time in weeks, and the
cost of shortening the duration of the activity by one week.

This exercise is a part of one that appeared in Exam 2011.
A small project has 6 sub-activities A, B, C, D, E, F whose individual dependency (shown by the immediate
predecessors) is given in Figure 1. Here we also list the normal time (in weeks), the absolute minimum
time and the cost of shortening the activity by one week.
The goal is to shorten the duration of the project to 19 weeks. This means that the duration of one
or more activities has to be shortened. Of course we want to select these so that the total cost of
shortening the duration to 19 weeks is minimized. Formulate this problem as a linear programming
problem and argue that the optimal solution to this LP will provide the correct answer. Write the model
in explicit form, that is, with the actual data inserted in the formulation.

Solution:
We will use a variable xi to indicate how much we will shorten activity i and another set of variables yi
which will indicate the earliest starting time of activity i. For each arc i → j in the project network we
will add the constraint yj ≤ yi +(di −xi). We also use a variable yend to express that the dummy activity
“end” cannot start before all its immediate predecessors have finished. Finally we add the constraint
yend ≤ 19 to force the total project time to be less or equal than 19.

6
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min 6xA + 10xB + 8xD + 8xE + 3xF

subject to yC ≥ yA + (7 − xA)
yC ≥ yB + (10 − xB)
yD ≥ yA + (7 − xB)
yD ≥ yB + (10 − xB)
yE ≥ yC + (5 − xc)
yE ≥ yD + (3 − xD)
yF ≥ yC + (5 − xC )
yF ≥ yD + (3 − xD)
yend ≥ yE + (8 − xE )
yend ≥ yF + (7 − xF )
yend ≤ 19
xA ≤ 2
xB ≤ 5
xC ≤ 0
xD ≤ 2
xE ≤ 3
xF ≤ 2
xA, xB, xC , xD, xE , xF ≥ 0
yA, yB, yC , yD, yE , yF , yend ≥ 0

Note that we could have left xC out of the model since its value is preset to zero. The optimal solution
to this LP will tell us to shorten activity i by xi ≥ 0 units and since the cost we apply to each xi is the
per unit shortening cost of that activity, the cost of the solution will be that of shortening the project in
the way suggested by the xi’s. Conversely, any feasible shortening of projects corresponds to a solution
to this LP whose cost (in the LP) is the actual cost of shortening the activities in the way suggested.

Exercise 6+ Quzzies

1. In 4D, how many hyperplanes need to intersect to give a point?

Solution:

4

2. In 4D, can a point be described by more than 4 hyperplanes?

Solution:

Yes, just think of a pyramid in 3D

3. Consider the intersection of n hyperplanes in n dimensions: when does it uniquely identify a
point?

Solution:

when the rank of the matrix A of the linear system is n (or A is nonsingular)

Vertices of Polyhedra:
Consider the polyhedron described by Ax ≤ b, A ∈ Rm×n, x ∈ Rn, that is:

a11x1 + a12x2 + · · · + a1nxn ≤ b1
a21x1 + a22x2 + · · · + a2nxn ≤ b2

...
...

am1x1 + am2x2 + · · · + amnxn ≤ bm

7
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4. For a point x of a polyhedron, we define as active constraints those that are satisified to equality
by x. How many constraints are active in a vertex of a polyhedron Ax ≤ b, A ∈ Rm×n, x ∈ Rn?

Solution:

at least n, rank of matrix of active constraints is n

5. Does every point x that activates n constraints form a vertex of the polyhedron?

Solution:

no, some may be not feasible, ie, intersection in a point outside of the polyhedron

6. Can a vertex activate more than n constraints?

Solution:

Yes, just look at the pyramid in 3 dim. However, the rank of the matrix of active constraints is still
n

7. What if there are more variables than constraints? If n < m then we can find a subset of constraints
and then activate but what if n > m, can we have a vertex?

Solution:

No. In LP we deal with this issue by adding slack variables, they make us choose arbitrarily a
vertex

8. Combinatorial explosion of vertices: how many constraints and vertices has an n-dimensional
hypercube?

Solution:

To define a cube we need 6 constraints and there are 23 vertices. For an n-hypercube we need
2n constraints and there are 2n vertices

9. If there are m constraints and n variables, m > n, what is an upper bound to the number of
vertices?

Solution:

the number of possible active constraints is
(m

n
)

it is an upper bound because:

– some combinations of constraints will not define a vertex, ie, if rows of matrix not independent
– some vertices are outside the polyhedron
– some vertices may activate more than n constraints and hence the same vertex can be given

by more than n constraints

Tableaux and Vertices

10. For each of these three statements, say if they are true or false:

– One tableau =⇒ one vertex of the feasible region

– One tableau ⇐= one vertex of the feasible region

– One tableau ⇐⇒ one vertex of the feasible region

8
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Solution:

One tableau ��⇐= one vertex of the feasible region degenerate vertices have several tableau asso-
ciated

11. Consider the following LP problem and the corresponding final tableau:
max 6x1 + 8x2

5x1 + 10x2 ≤ 60
4x1 + 4x2 ≤ 40

x1, x2 ≥ 0

x1 x2 x3 x4 −z b
x2 0 1 1/5 −1/4 0 2
x1 1 0 −1/5 1/2 0 8

0 0 −2/5 −1 1 −64

– How many variables (original and slack) can be different from zero?

Solution:
at most 2

– (x3, x4) = (0, 0) are non basic, what does this tell us about the original constraints?

Solution:
The two original constraints are both active (that is, satisfied at equality) because their
corresponding slack is zero.

Let’s generalize the previous case. Consider an LP with m constraints, n original variables and m
slack variables. In an optimal solution:

– if m > n, how many variables (original and slack) can be nonzero at most?

Solution:
at most m

– if m < n how many original variables must be zero at least? In other terms, in a mix planning
problem with n products and m, m < n resources, how many products at most will be to be
produced in an optimal solution?

Solution:
n − m, and hence at most m < n products

Solution:
at most m

12. Consider the following LP problem and the corresponding final tableau:
max 6x1 + 8x2

5x1 + 10x2 ≤ 60
4x1 + 4x2 ≤ 40

x1, x2 ≥ 0

x1 x2 x3 x4 −z b
x3 0 0 1 1/2 0 1
x1 1 1 0 −1/2 0 1

0 −2 0 1/2 1 −1
(x2, x4) = (0, 0) are non basic variables, what does this tell us about the original constraints of the
problem?

Solution:

The second constraint is active because its slack x4 is zero.

13. If in the original space of the problem we had 3 variables, and there are 6 constraints, how many
constraints would be active?

Solution:

3 constraints. With slack variables we would have 6 variables in all, if any of them is positive the
constraint xi ≥ 0 of the original variables would be active, otherwise the corresponding constraints
of the original problem are active.

9
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14. For the general case with n original variables:
One basic feasible solution ⇐⇒ a matrix of active constraints has rank n. True or False?

Solution:
True

15. Consider an LP problem with m constraints and n original variables, m > n. We saw that in Rn a
point is the intersection of at least n hyperplanes. In LP this corresponds to say that in a vertex
there are n active constraints. Let a tableau be associated with a solution that makes exactly
n + 1 constraints active, what can we say about the corresponding basic and non-basic variable
values?

Solution:
one basic variable is zero. Indeed, in the simplex we will have m + n variables and m variables in
basis. We saw that the n non basic variables are set to zero and that there is an active constraint
for each of them (initially they are those where the slack variables are). Hence, if there are n + 1
active constraints, there must be another variable that is set to zero. It must be a basic variable.

16. Given a polyhedron, what is the algebraic definition of vertex adjacency in 2, 3 and n dimensions?

Solution:
two vertices are adjacent iff:

– they have at least n − 1 active constraints in common
– rank of common active constraints is n − 1

How does this condition translate in terms of tableau?

Solution:
For what seen above this translates in n − 1 basis variables in common in the tableau

Exercise 7+

What argument is used to prove that the simplex algorithm always terminates in a finite number of
iterations if it does not encounter a situation in which one of the basic variables is zero? What may
happen instead if the latter situation arises and which remedies are introduced?

Exercise 8
Exercise 3 from Exam 2013.
Consider the following LP problem:

(P) max z = x1 + 5x2
s.t. −x1 + 3x2 ≤ 6

4x1 + 4x2 ≥ 5
0 ≤ x1 ≤ 2

x2 ≥ 0

(x i
1, x i

2)

(x ii
1 , x ii

2 )

(x iii
1 , x iii

2 )

(x iv
1 , x iv

2 )

x1

x2

(Note: the following subtasks can be carried out independently; use fractional mode for numerical
calculations)

10
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a. The polyhedron representing the feasibility region is depicted in the figure. Indicate for each of the
four points represented whether they are feasible and/or basic solutions. Justify your answer.

Solution:

• Point 1 is a feasible solution but not basic (no constraint is active in that point).
• Point 2 is a feasible solution but not basic (only one constraint is active while two are needed)
• Point 3 is a basic feasible solution
• Point 4 is a basic solution (combination of two active constraints) but non feasible.

b. Write the initial tableau or dictionary for the simplex method. Write the corresponding basic solution
and its value. State whether the solution is feasible or not and whether it is optimal or not.

Solution:

z = max x1 + 5x2
s.t. −x1 + 3x2 ≤ 6

−4x1 − 4x2 ≤ −5
x1 ≤ 2
x1 ≥ 0
x2 ≥ 0

|-----+----+----+----+----+----+----+----|

| | x1 | x2 | x3 | x4 | x5 | -z | b |

|-----+----+----+----+----+----+----+----|

| I | -1 | 3 | 1 | 0 | 0 | 0 | 6 |

| II | -4 | -4 | 0 | 1 | 0 | 0 | -5 |

| III | 1 | 0 | 0 | 0 | 1 | 0 | 2 |

| IV | 1 | 5 | 0 | 0 | 0 | 1 | 0 |

|-----+----+----+----+----+----+----+----|

The basic solution is x1 = 0, x2 = 0, x3 = 6, x4 = −5 and x5 = 2. Its value is 0. The solution is not
feasible.

c. Consider the following tableau:

|-----+----+----+----+------+----+----+------|

| | x1 | x2 | x3 | x4 | x5 | -z | b |

|-----+----+----+----+------+----+----+------|

| I | 0 | 4 | 1 | -1/4 | 0 | 0 | 29/4 |

| II | 1 | 1 | 0 | -1/4 | 0 | 0 | 5/4 |

| III | 0 | -1 | 0 | 1/4 | 1 | 0 | 3/4 |

| IV | 0 | 4 | 0 | 1/4 | 0 | 1 | -5/4 |

|-----+----+----+----+------+----+----+------|

and the following three pivoting rules:

• largest coefficient
• largest increase
• steepest edge.

Which entering and leaving variables would each of them indicate? In this specific case, which rule
would be convenient to follow? Report the details of the computations for the first two rules and
carry out graphically the application of the third rule using the plot in the figure above (tikz code to
reproduce the figure available in the online version.)

Solution:

11
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• The two candidate entering variables are x2 and x4. The reduced cost of x2 is larger hence
that is the entering variable. The leaving variable is consequently given by the ratio test and
is x1 since 5/4 < 29/16.

• The two candidate entering variables are x2 and x4. The increase possible with x2 is min{29/4 ·
1/4, 5/4 ·1} ·4 = 5 while the increase with x4 is min{3/4 ·4} ·1/4 = 3/4. Hence x2 is the entering
variable and the leaving variable is x1.

• In the figure we plot the vector c which is the perpendicular to the objective function and the
two vectors corresponding to the movement we would take by the iteration of the simplex. The
angle between c and xnew − xold is smaller for the decision x2 entering x1 leaving.

c

xnew − xold

xnew − xold

None of the three rules is convenient, the best would be to let x4 enter and x5 leave, we would reach
the optimal solution in less iterations.

Exercise 9∗

The two following LP problems lead to two particular cases when solved by the simplex algorithm.
Identify these cases and characterize them, that is, give indication of which conditions generate them
in general.

maximize 2x1 + x2
subject to x2 ≤ 5

−x1 + x2 ≤ 1
x1, x2 ≥ 0

maximize x1 + x2
subject to 5x1 + 10x2 ≤ 60

4x1 + 4x2 ≤ 40
x1, x2 ≥ 0

Solution:
In the initial tableau of the first problem there is a column, the first one, with positive reduced cost and
no positive aij term. This means that the corresponding variable x1 can be brought into the basis but
the increase of its value is unlimited. This indicates that we have an unbounded problem.
The second LP problem is developed in the slides for the lecture on exception handling. After some
iterations we reach a tableau in which a non basic variable has reduced cost zero. This indicates that
it can be brought in the basis without a change in the objective function. Since the solution changes
when we bring the variable in basis then the problem has more than one solution and it has therefore
infinite solutions. They can be expressed as the convex combination of all optimal basic solutions.

Exercise 10
Consider the following problem:

max z = 4x2
s.t. 2x2 ≥ 0

−3x1 + 4x2 ≥ 1
x1, x2 ≥ 0

12
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a. Write the LP in equational standard form and say why it does not provide immediately an initial
feasible basis for the simplex method.

Solution:

In the equational standard form we have a negative b term. The implication of this is that the initial
solution of the simplex is infesible because xB ̸≥ 0. If we try to make the term positive we end up
not having an identity matrix in the tableau.

b. To overcome the situation of infeasible basis construct the auxiliary problem for a phase I-phase II
solution approach. Determine which variables are initially in basis and which are not in basis in
the auxiliary problem.

c. Answer the following questions

i) Is the initial basis in the auxiliary problem feasible in the original problem?
ii) Is it optimal in the auxiliary problem?
iii) Is it degenerate?
iv) Can we say at this stage if phase I will terminate?
v) If it will terminate, can we say at this stage that it will terminate with a basis that corresponds

to a feasible solution in the original problem?
vi) Solve the problem by carrying out Phase I and Phase II of the simplex algorithm.

13


