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Solution:
Included.
Exercises with the symbol + are to be done at home before the class. Exercises with the symbol ∗
will be tackled in class and should be at least read at home. The remaining exercises are left for self
training after the exercise class.

Exercise 1+

Show that the dual of max{cT x |Ax = b, x ≥ 0} is min{yTb|yTA ≥ c}. Use one of the methods presented
in class or even all of them.

Solution:
Let’s show it here by the bounding method.
Given max{cT x | Ax = b, x ≥ 0} we search for multipliers y ∈ Rn such that yTAx = yTb (since
we have equalities, the multipliers can be both positive or negative as we do not need to ensure the
maintainance of the direction of the inequality). To ensure that we find an upper bound and hence
have cT x ≤ yTAx , we impose yTA ≥ cT (since x ≥ 0). Hence, the best upper bound will be given
by solving min{yTb | yTA ≥ cT } (recalling from linear algebra that (AB)T = BTAT , we can rewrite:
min{yTb | ATy ≥ c}, which is the form we would obtain using the recipe method.)

Exercise 2
Consider the following LP problem:

max 2x1 + 3x2
2x1 + 3x2 ≤ 30
x1 + 2x2 ≥ 10
x1 − x2 ≤ 1
x2 − x1 ≤ 1
x1 ≥ 0

• Write the dual problem

• Using the optimality conditions derived from the theory of duality, and without using the simplex
method, find the optimal solution of the dual knowing that the optimal solution of the primal is
(27/5, 32/5).

Solution:
The dual is:

min 30y1 + 10y2 + y3 + y4
2y1 + y2 + y3 − y4 ≥ 2
3y1 + 2y2 − y3 + y4 = 3
y1, y3, y4 ≥ 0
y2 ≤ 0

We use the complementary slackness theorem.





2y1 + y2 + y3 − y4 = 2
3y1 + 2y2 − y3 + y4 = 3
y2 = 0
y3 = 0
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The first because the corresponding variable of the primal is > 0, the second for the same reason or
however because it is already tight by definition, the third and fourth equation are a consequence of
the fact that substituting the value of the primal variables variables in the primal problem, the second
and third constraints are binding. What we obtain is a linear system of four equations in four variables
that we can solve to find the value of the variables of the dual problem.

Exercise 3∗

Consider the problem

maximize 5x1 + 4x2 + 3x3
subject to 2x1 + 3x2 + x3 ≤ 5

4x1 + x2 + 2x3 ≤ 11
3x1 + 4x2 + 2x3 ≤ 8
x1, x2, x3 ≥ 0

Without applying the simplex method, how can you tell whether the solution (2, 0, 1) is an optimal
solution? Is it? [Hint: consider consequences of Complementary slackness theorem.]

Exercise 4
Consider the following LP:

min 3x1 + 2x2 − 4x3
2x1 + x2 + x3 ≥ 3
x1 + x2 + 2x3 ≤ 5
x1, x2, x3 ≥ 0

Find the optimal solution knowing that the solution of the dual problem is (u1, u2) = (10/3, 11/3).

Exercise 5+ LP modeling — Investment plan
An investor has 10,000 Dkk to invest in four projects. The following table gives the cash flow for the
four investments.

Project Year 1 Year 2 Year 3 Year 4 Year 5
1 -1.00 0.50 0.30 1.80 1.20
2 -1.00 0.60 0.20 1.50 1.30
3 0.00 -1.00 0.80 1.90 0.80
4 -1.00 0.40 0.60 1.80 0.95

The information in the table can be interpreted as follows: For project 1, 1.00 Dkk invested at the start
of year 1 will yield 0.50 Dkk at the start of year 2, 0.30 Dkk at the start of year 3, 1.80 Dkk at the
start of year 4, and 1.20 Dkk at the start of year 5. The remaining entries can be interpreted similarly.
The entry 0.00 indicates that no transaction is taking place. The investor has the additional option of
investing in a bank account that earns 6.5% annually. All funds accumulated at the end of 1 year can be
reinvested in the following year. Formulate the problem as a linear program to determine the optimal
allocation of funds to investment opportunities.
[Taken from Operations Research: An Introduction, Taha]

Solution:
Let
xi = Krone invested in project i, i = 1, 2, 3, 4
yj = Krone invested in bank in year j, j = 1, 2, 3, 4
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Figure 1:

max z =y5

x1 + x2 + x4 + y1 ≤ 10000
.5x1 + .6x2 − x3 + .4x4 + 1.065y1 − y2 = 0
.3x1 + .2x2 + .8x3 + .6x4 + 1.065y2 − y3 = 0
1.8x1 + 1.5x2 + 1.9x3 + 1.8x4 + 1.065y3 − y4 = 0
1.2x1 + 1.3x2 + .8x3 + .95x4 + 1.065y4 − y5 = 0
x1, x2, x3, x4, y1, y2, y3, y4, y5 ≥ 0

Optimum solution:
x1 = 0, x2 = 10, 000, x3 = 6000, x4 = 0
y1 = 0, y2 = 0, y3 = 6800, y4 = 33, 642
z = 53, 628.73 at the start of year 5

Exercise 6∗ LP modeling — Budget Allocation
A company has six different opportunities to invest money. Each opportunity requires a certain invest-
ment over a period of 6 years or less. See Figure 1.
The company wants to invest in those opportunities that maximize the combined Net Present Value
(NPV). It also has an investment budget that needs to be met for each year. (The Net Present Value is
calculated with an interest rate of 5%).
How should the company invest?
We assume that it is possible to invest partially in an opportunity. For instance, if the company decides
to invest 50% of the required amount in an opportunity, the return will also be 50%.

Net present value:
A debtor wants to delay the payment back of a loan for t years. Let P be the value of the original
payment presently due. Let r be the market rate of return on a similar investment asset. The future
value of P is

F = P(1 + r)t

Viceversa, consider the task of finding the present value P of $100 that will be received in five years, or
equivalently, which amount of money today will grow to $100 in five years when subject to a constant
discount rate. Assuming a 5% per year interest rate, it follows that

P = F
(1 + r)t = $100

(1 + 0.05)5 = $78.35.

Solution:
Net Present Value calculation:
for each opportunity we calculate the NPV at time zero (the time of decision) as:

P0 =
5∑

t=1

Ft
(1 + 0.05)5

3



DM545/DM871 – Spring 2024 Assignment Sheet

Let Bt be the budget available for investments during the years t = 1..5. Let atj be the cash flow for
opportunity j and cj its NPV. We want to choose a set of opportunities such that the budget is never
exceeded and the expected return is maximized. We consider divisible opportunities.

Variables xj = 1 if opportunity j is selected and xj = 0 otherwise, j = 1..6

Objective

max
6∑

j=1
cjxj

Constraints ∑6
j=1 atjxj + Bt ≥ 0 ∀t = 1..5

Exercise 7
Consider the following problem:

maximize z = x1 − x2
subject to x1 + x2 ≤ 2

2x1 + 2x2 ≥ 2
x1, x2 ≥ 0

In the ordinary simplex method this problem does not have an initial feasible basis. Hence, the method
has to be enhanced by a preliminary phase to attain a feasible basis. Traditionally we talk about a
phase I–phase II simplex method. In phase I an initial feasible solution is sought and in phase II the
ordinary simplex is started from the initial feasible solution found.
There are two ways to carry out phase I.

• Solving an an auxiliary LP problem defined by introducing auxiliary variables and minimizing them
in the objective. The solution of the auxiliary LP problem gives an initial feasible basis or a proof
of infeasibility.

• Applying the dual simplex on a possibly modified problem to find a feasible solution. If the
initial infeasible tableau of the original problem is not optimal then the objective function can
be temporarily modified for this phase in order to make the initial tableau optimal although
not feasible. Opposite to the primal simplex method, the dual simplex method iterates through
infeasible basic solutions, while maintaining them optimal, and stops when a feasible solution is
reached.

Dual Simplex: The strong duality theorem states that we can solve the primal problem by solving its
dual. You can verify that applying the primal simplex method to the dual problem corresponds to the
following method, called dual simplex method that works on the primal problem:

1. (Feasibility condition) select the leaving variable by picking the basic variable whose right-hand
side term is negative, i.e., select i∗ with bi∗ < 0.

2. (Optimality condition) pick the entering variable by scanning across the selected row and com-
paring ratios of the coefficients in this row to the corresponding coefficients in the objective row,
looking for the largest negated. Formally, select j∗ such that j∗ = min{|cj /ai∗j | : ai∗j < 0}

3. Update the tableau around the pivot in the same way as with the primal simplex.

4. Stop if no right-hand side term is negative.

Duality can help us with the issue of initial feasible basic solutions. In the problem above, the initial
tableau is infeasible and not optimal, hence we cannot apply the primal simplex nor the dual simplex.
However, if the objective function was w = −x1 − x2, then we would have th econditions of infeasibility
and optimality needed by the dual simplex. You can understand this also looking at the dual problem.
With the new objective function the initial basic solution of the dual problem would be feasible and we
could solve the problem solving the dual problem with the primal simplex. In contrast, with original
objective function z the primal simplex has infeasible initial basis in both problems. So we can change
temporarily the objective function z with w and apply the dual simplex method to the primal problem.
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When it stops we reached a feasible solution that is optimal with respect to w . We can then reintroduce
the original objective function and continue iterating with the primal simplex. The phase I–phase II
simplex method that uses the dual simplex is also called the dual-primal simplex method.
Apply the two versions of the phase I–phase II simplex method (that is, phase I is carried out with the
auxiliary problem or with the dual simplex) to the problem above and verify that they lead to the same
solutions.

Solution:

max x1 − x2 = z
x1 + x2 ≤ 2

2x1 + 2x2 ≥ 2
x1, x2 ≥ 0

We put in equational standard form by introducing a slack variable s1 ≥ 0 and a surplus variable s2 ≥ 0:

max x1 − x2 = z
x1 + x2 + s1 = 2

2x1 + 2x2 − s2 = 2
x1, x2, s1, s2 ≥ 0

This form is not canonical and therefore the first tableau does not have a feasible starting solution.

Auxiliary Problem Approach

We proceed by

• Phase I solving an auxiliary/augmented problem

• Phase II continuing with ordinary simplex

Phase I We introduce an auxiliary variable a1 ≥ 0 in the constraint that makes the infeasibility to
yield a canonical form:

max x1 − x2 = z
x1 + x2 + s1 = 2

2x1 + 2x2 − s2 + a1 = 2
x1, x2, s1, s2, a1 ≥ 0

Now we have a canonical form

| x1 | x2 | s1 | s2 | a1 | -z | b |

|----+----+----+----+----+----+---|

| 1 | 1 | 1 | 0 | 0 | 0 | 2 |

| 2 | 2 | 0 | -1 | 1 | 0 | 2 |

| 1 | -1 | 0 | 0 | 0 | 1 | 0 |

|----+----+----+----+----+----+---|

This problem will have the same solution as the original one only when a1 = 0. We can then solve

• an augmented problem by introducing the following objective function maxw = x1 − x2 − Ma1,
where M is a large enough constant or

• an auxiliary problem minw = a1 = −max(−a1).

Let’s take the auxiliary problem, if w∗ > 0 then we will conclude that the feasibility region of the orginal
problem is empty. Otherwise, if w∗ = 0, then this implies that a1 = 0 and we found a feasible solution.
Let’s proceed by setting up the tableau of the auxiliary problem
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| x1 | x2 | s1 | s2 | a1 | -z | -w | b |

|----+----+----+----+----+----+----+---|

| 1 | 1 | 1 | 0 | 0 | 0 | 0 | 2 |

| 2 | 2 | 0 | -1 | 1 | 0 | 0 | 2 |

| 1 | -1 | 0 | 0 | 0 | 1 | 0 | 0 |

| 0 | 0 | 0 | 0 | -1 | 0 | 1 | 0 |

|----+----+----+----+----+----+----+---|

This is not in canonical form but it is easy to bring it to canonical form: just add the second row to the
last one.

| x1 | x2 | s1 | s2 | a1 | -z | -w | b |

|----+----+----+----+----+----+----+---|

| 1 | 1 | 1 | 0 | 0 | 0 | 0 | 2 |

| 2 | 2 | 0 | -1 | 1 | 0 | 0 | 2 |

| 1 | -1 | 0 | 0 | 0 | 1 | 0 | 0 |

| 2 | 2 | 0 | -1 | 0 | 0 | 1 | 2 |

|----+----+----+----+----+----+----+---|

The variables s1, a1 give us a feasible basis now. It is not optimal. We proceed with the pivot operations.
In this case it is worth noting that in the ratio rule, we do not consider the third row since that row
corresponds to the orginal objective function and not to a constraint.
We make x1 enter the basis and consequently a1 goes out. The pivot is 2 and the new tableau:

| | x1 | x2 | s1 | s2 | a1 | -z | -w | b |

|------------+----+----+----+------+------+----+----+----|

| R1’=R1-R2’ | 0 | 0 | 1 | 1/2 | -1/2 | 0 | 0 | 1 |

| R2’=R2/2 | 1 | 1 | 0 | -1/2 | 1/2 | 0 | 0 | 1 |

| R3’=R3-R2’ | 0 | -2 | 0 | 1/2 | -1/2 | 1 | 0 | -1 |

| R4’=R4-R2 | 0 | 0 | 0 | 0 | -1 | 0 | 1 | 0 |

|------------+----+----+----+------+------+----+----+----|

The tableau is optimal. One non basic variable has reduced cost null, which indicates that there are
infinite solutions, but this is not relevant now. The relevant thing is that w∗ = 0 hence the minimum of
the auxiliary problem is 0 and hence there is a feasible solution for a1 = 0. This concludes the Phase
I of the algorithm since a feasible solution for the auxiliary problem is feasible also for the original
problem.

Phase II We throw away the last row and the second last column from the tableau since we do not
need them anymore.

| x1 | x2 | s1 | s2 | a1 | -z | b |

+----+----+----+------+------+----+----|

| 0 | 0 | 1 | 1/2 | -1/2 | 0 | 1 |

| 1 | 1 | 0 | -1/2 | 1/2 | 0 | 1 |

| 0 | -2 | 0 | 1/2 | -1/2 | 1 | -1 |

+----+----+----+------+------+----+----|

The tableau is not optimal. The basic solution corresponding to this tableau is feasible but not optimal.
We bring s2 in the basis and make s1 leave. The new tableau is:
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| | x1 | x2 | s1 | s2 | a1 | -z | b |

|-----------+----+----+----+----+-----+----+----|

| R1’=2*R1 | 0 | 0 | 2 | 1 | -1 | 0 | 2 |

| R2’=R2+R1 | 1 | 1 | 0 | 0 | 1/2 | 0 | 2 |

| R3’=R3-R1 | 0 | -2 | -1 | 0 | 0 | 1 | -2 |

|-----------+----+----+----+----+-----+----+----|

The tableau is now optimal. The optimal solution is x = (2, 0) and z∗ = 2.

Dual-Primal Simplex Method

Phase I Let’s write the dual of the problem above:

max x1 − x2 = z
x1 + x2 ≤ 2

2x1 + 2x2 ≥ 2
x1, x2 ≥ 0

min 2y′1 + 2y′2 = w
y′1 + 2y′2 ≥ 1
y′1 + 2y′2 ≥ −1

y′1 ≥ 0
y′2 ≤ 0

y′1=y1
y′2=−y2−−−−→

min 2y1 − 2y2 = w
y1 − 2y2 ≥ 1
y1 − 2y2 ≥ −1

y1, y2 ≥ 0

If we put this LP problem in standard form:

max −2y1 + 2y2 = w
−y1 + 2y2 ≤ −1
−y1 + 2y2 ≤ 1

y1, y2 ≥ 0

and look at the tableau:

| y1 | y2 | s1 | s2 | -z | b |

|----+----+----+----+----+----|

| -1 | 2 | 1 | 0 | 0 | -1 |

| -1 | 2 | 0 | 1 | 0 | 1 |

| -2 | 2 | 0 | 0 | 1 | 0 |

|----+----+----+----+----+----|

we see that the initial tableau like for the primal problem is infeasible.
However, the dual problem has an advantage, if we change temporarily the objective function of the
primal problem to η = −x1 − x2, the dual problm becomes:

max−x1− x2=η
x1+ x2≤2

2x1+2x2≥2
x1, x2≥0

min2y1−2y2= γ
y1−2y2≥−1
y1−2y2≥−1
y1, y2≥ 0

max−2y1+2y2=γ
−y1+2y2≤1
−y1+2y2≤1

y1, y2≥0

and the corresponding tableau has an easy feasible basic solution:

| y1 | y2 | s1 | s2 | -z | b |

|----+----+----+----+----+---|

| -1 | 2 | 1 | 0 | 0 | 1 |

| -1 | 2 | 0 | 1 | 0 | 1 |
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| -2 | 2 | 0 | 0 | 1 | 0 |

|----+----+----+----+----+---|

We can then solve to optimality with the primal simplex: the variable y2 enters the basis and the
variable s2 exits. The new tableau becomes:

| | y1 | y2 | s1 | s2 | -z | b |

|-----------+------+----+----+-----+----+------|

| R1 | -1 | 2 | 1 | 0 | 0 | 1 |

| R2’=R2/2 | -1/2 | 1 | 0 | 1/2 | 0 | 1/2 |

| R3’=R3-R2 | -1 | 0 | 0 | -1 | 1 | -1/2 |

|-----------+------+----+----+-----+----+------|

and it is optimal. At this stage we can go back to the primal problem where we now have a feasible
solution, change the objective function back to the original one and continue with the primal simplex.

We can do the same iteration on the primal but with the dual simplex. Let’s write the tableau of the
primal with the objective function temporarily changed and keeping the old objective as well:

| x1 | x2 | s1 | s2 | -z | -e | b |

|----+----+----+----+----+----+----|

| 1 | 1 | 1 | 0 | 0 | 0 | 2 |

| -2 | -2 | 0 | 1 | 0 | 0 | -2 |

| 1 | -1 | 0 | 0 | 1 | 0 | 0 |

| -1 | -1 | 0 | 0 | 0 | 1 | 0 |

|----+----+----+----+----+----+----|

As we see we have the conditions of the dual simplex satisfied, the tableau is optimal but not feasible.
Let’s make an iteration of the dual simplex. We choose the row with negative b term and the column
with negative pivot that minimizes the ratio test: |c/a|. We choose the second row and the second
column (again watch out that we do not consider the row of the old objective to decide the column). In
other terms, we try to make the solution feasible while minimizing the loss in quality. The opertations
to update the tableau remain the same as for the primal simplex. We obtan:

| | x1 | x2 | s1 | s2 | -z | -e | b |

|------------+----+----+----+------+----+----+---|

| R1’=R1-R2’ | 0 | 0 | 1 | 1/2 | 0 | 0 | 1 |

| R2’=-1/2R2 | 1 | 1 | 0 | -1/2 | 0 | 0 | 1 |

| R3’=R3+R2’ | 2 | 0 | 0 | -1/2 | 1 | 0 | 1 |

| R4’=R4+R2’ | 0 | 0 | 0 | -1/2 | 0 | 1 | 1 |

|------------+----+----+----+------+----+----+---|

This tableau is optimal for the dual simplex, this means that a feasible solution for the primal problem
has been found: (0, 1, 1, 0). We can now proceed with the primal simplex.
Note that the considerations on the dual problem made above were just for explanation purposes, when
solving our LP problem we do not need to write the dual form of it or its tableaux. Instead, we just need
to switch from dual simplex to primal simplex always working on the original (the primal) formulation of
the problem. The dual simplex method is simply a new way of picking the entering and leaving variables
in a sequence of primal tableaux.
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Phase II We can now remove the temporary objective function and the corresponding column and
proceed with the primal simplex.

| x1 | x2 | s1 | s2 | -z | b |

|----+----+----+------+----+---|

| 0 | 0 | 1 | 1/2 | 0 | 1 |

| 1 | 1 | 0 | -1/2 | 0 | 1 |

| 2 | 0 | 0 | -1/2 | 1 | 1 |

|----+----+----+------+----+---|

x1 enters the basis and x2 exits. The tableau is updated consequently:

| | x1 | x2 | s1 | s2 | -z | b |

|-------------+----+----+----+------+----+----|

| R1’=R1 | 0 | 0 | 1 | 1/2 | 0 | 1 |

| R2’=R2 | 1 | 1 | 0 | -1/2 | 0 | 1 |

| R3’=R3-2*R2 | 0 | -2 | 0 | 1/2 | 1 | -1 |

|-------------+----+----+----+------+----+----|

A reduced cost is still positive, hence we make s2 enters in the basis and s1 leave. This leads to

| | x1 | x2 | s1 | s2 | -z | b |

|-----------+----+----+----+----+----+----|

| R1’=2*R1 | 0 | 0 | 2 | 1 | 0 | 2 |

| R2’=R2+R1 | 1 | 1 | 1 | 0 | 0 | 2 |

| R3’=R3-R1 | 0 | -2 | -1 | 0 | 1 | -2 |

|-----------+----+----+----+----+----+----|

The tableau is now optimal and the corresponding basic feasible solution is x = (2, 0) and has value
z∗ = 2.
We can visualize the problem using the LP Grapher tool linked from the course webpage:
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Exercise 8∗

Write the dual of the following problem

(P) max
∑

j∈J

∑

i∈I
rjxij

∑

j∈J
xij ≤ bi ∀i ∈ I

∑

i∈I
xij ≤ dj ∀j ∈ J

∑

i∈I
pixij = pj

∑

i∈I
xij ∀j ∈ J

xij ≥ 0 ∀i ∈ I, j ∈ J

Solution:
There are three different sets of constraints. We introduce the dual variables αi ≥ 0, for i ∈ I , for the
first set; the dual variables βj ≥ 0, for j ∈ J , for the second set; and the dual variables γj ∈ R, for j ∈ J
for the third set.
We then write the A matrix for the example in the picture, augmented with the b vector:

1 1 1 1 0 0 0 0 b1

0 0 0 0 1 1 1 1 b2

1 1 d1

1 1 d2

1 1 d3

1 1 d4

pG − p1 pT − p1
pG − p2 pT − p2

pG − p3 pT − p3
pG − p4 pT − p4









xG1 xG2 xG3 xG4 xT1 xT2 xT3 xT4

r1 r2 r3 r4 r1 r2 r3 r4

and finally the dual from the columns of the A matrix in general terms:

(D) min
∑

i∈I
αibi +

∑

j∈J
βjdj

αi + βj + (pi − pj )γj ≥ rj ∀i ∈ I, j ∈ J
αi ≥ 0 ∀i ∈ I
βj ≥ 0 ∀j ∈ J
γj ∈ R ∀j ∈ J
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