DM545/DM871
 Linear and Integer Programming

Lecture 5

Duality

Marco Chiarandini

Department of Mathematics \& Computer Science
University of Southern Denmark

Outline

1. Derivation and Motivation
2. Theory

Outline

1. Derivation and Motivation

2. Theory

Dual Problem

Dual variables y in one-to-one correspondence with the constraints:

Primal problem:

$$
\begin{aligned}
\max \quad z & =\boldsymbol{c}^{\top} \boldsymbol{x} \\
A \boldsymbol{x} & \leq \boldsymbol{b} \\
\boldsymbol{x} & \geq 0
\end{aligned}
$$

Dual Problem:

$$
\begin{aligned}
\min w & =\boldsymbol{b}^{T} \boldsymbol{y} \\
A^{T} \boldsymbol{y} & \geq \boldsymbol{c} \\
\boldsymbol{y} & \geq 0
\end{aligned}
$$

Bounding approach

$$
\begin{aligned}
z^{*}=\max 4 x_{1}+x_{2}+3 x_{3} & \\
x_{1}+4 x_{2} & \leq 1 \\
3 x_{1}+x_{2}+x_{3} & \leq 3 \\
x_{1}, x_{2}, x_{3} & \geq 0
\end{aligned}
$$

a feasible solution is a lower bound but how good?
By tentatives:

$$
\begin{aligned}
& \left(x_{1}, x_{2}, x_{3}\right)=(1,0,0) \rightsquigarrow z^{*} \geq 4 \\
& \left(x_{1}, x_{2}, x_{3}\right)=(0,0,3) \rightsquigarrow z^{*} \geq 9
\end{aligned}
$$

What about upper bounds?

$$
\begin{array}{rlrl}
2 \cdot\left(\begin{array}{c}
x_{1}+4 x_{2}
\end{array}\right) & \leq 2 \cdot 1 \\
+3 \cdot\left(3 x_{1}+x_{2}+x_{3}\right) & \leq 3 \cdot 3 \\
\hline 4 x_{1}+x_{2}+3 x_{3} & \leq & 11 x_{1}+11 x_{2}+3 x_{3} & \leq 11 \\
\boldsymbol{c}^{\top} \boldsymbol{x} & \leq \quad \boldsymbol{y}^{\top} A \boldsymbol{x} & \leq \boldsymbol{y}^{\top} \boldsymbol{b}
\end{array}
$$

Hence $z^{*} \leq 11$. Is this the best upper bound we can find?
multipliers $y_{1}, y_{2} \geq 0$ that preserve sign of inequality

$$
\begin{array}{ll}
y_{1} \cdot\left(x_{1}+4 x_{2}\right) & \leq y_{1}(1) \\
\left.\frac{y_{2} \cdot\left(3 x_{1}+x_{2}+\right.}{} x_{3}\right) & \leq y_{2}(3) \\
\hline\left(y_{1}+3 y_{2}\right) x_{1}+\left(4 y_{1}+y_{2}\right) x_{2}+y_{2} x_{3} & \leq y_{1}+3 y_{2}
\end{array}
$$

Coefficients

$$
\begin{aligned}
y_{1}+3 y_{2} & \geq 4 \\
4 y_{1}+y_{2} & \geq 1 \\
y_{2} & \geq 3
\end{aligned}
$$

$z=4 x_{1}+x_{2}+3 x_{3} \leq\left(y_{1}+3 y_{2}\right) x_{1}+\left(4 y_{1}+y_{2}\right) x_{2}+y_{2} x_{3} \leq y_{1}+3 y_{2}$ then to attain the best upper bound:

$$
\begin{aligned}
\min y_{1}+3 y_{2} & \\
y_{1}+3 y_{2} & \geq 4 \\
4 y_{1}+y_{2} & \geq 1 \\
y_{2} & \geq 3 \\
y_{1}, y_{2} & \geq 0
\end{aligned}
$$

Multipliers Approach

Working columnwise, since at optimum $\bar{c}_{k} \leq 0$ for all $k=1, \ldots, n+m$:

$$
\left.\left\{\begin{array}{ccccccc}
\pi_{1} a_{11} & + & \pi_{2} a_{21} & \ldots+ & \pi_{m} a_{m 1} & +\pi_{m+1} c_{1} & \leq
\end{array}\right) 0 \begin{array}{c}
0 \\
\vdots \\
\ddots
\end{array}\right]
$$

(from the last row we have also $z=-\pi b$)

$$
\begin{aligned}
-z= & \pi_{1} b_{1} \\
\pi_{1} a_{11} & +\pi_{2} b_{2} \ldots+\pi_{2} a_{21} \ldots+\pi_{m} b_{m} \\
\vdots & \ddots
\end{aligned}
$$

$y=-\pi$

$$
\begin{aligned}
& -z=\left(-y_{1} b_{1}\right)+\left(-y_{2} b_{2}\right) \ldots+\left(-y_{m} b_{m}\right) \\
& \left(-y_{1} a_{11}\right)+\left(-y_{2} a_{21}\right) \ldots+\left(-y_{m} a_{m 1}\right) \leq-c_{1} \\
& \left(-y_{1} a_{1 n}\right)+\left(-y_{2} a_{2 n}\right) \ldots+\left(-y_{m} a_{m n}\right) \leq-c_{n} \\
& -y_{1},-y_{2}, \ldots-y_{m} \leq 0
\end{aligned}
$$

as we will see $\boldsymbol{b}^{T} \boldsymbol{y} \geq \boldsymbol{c}^{T} \boldsymbol{x}$, hence it is more interesting to minimize. It yields:

$$
\begin{gathered}
\min \boldsymbol{b}^{T} \boldsymbol{y} \\
A^{T} \boldsymbol{y} \geq \boldsymbol{c} \\
\boldsymbol{y} \geq 0
\end{gathered}
$$

Example

$$
\begin{aligned}
\max 6 x_{1}+8 x_{2} & \\
5 x_{1}+10 x_{2} & \leq 60 \\
4 x_{1}+4 x_{2} & \leq 40 \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

$$
\left\{\begin{array}{r}
5 \pi_{1}+4 \pi_{2}+6 \pi_{3} \leq 0 \\
10 \pi_{1}+4 \pi_{2}+8 \pi_{3} \leq 0 \\
1 \pi_{1}+0 \pi_{2}+0 \pi_{3} \leq 0 \\
0 \pi_{1}+1 \pi_{2}+0 \pi_{3} \leq 0 \\
0 \pi_{1}+0 \pi_{2}+1 \pi_{3}=1 \\
60 \pi_{1}+40 \pi_{2}
\end{array}\right.
$$

$$
\begin{aligned}
& y_{1}=-\pi_{1} \geq 0 \\
& y_{2}=-\pi_{2} \geq 0
\end{aligned}
$$

Duality Recipe

	Primal linear program	Dual linear program
Variables	$x_{1}, x_{2}, \ldots, x_{n}$	$y_{1}, y_{2}, \ldots, y_{m}$
Matrix	A	A^{T}
Right-hand side	b	c
Objective function	$\max \mathbf{c}^{T} \mathbf{x}$	$\min \mathbf{b}^{T} \mathbf{y}$
Constraints	$\begin{aligned} i \text { th constraint has } & \leq \\ & \geq \\ & = \end{aligned}$	$\begin{aligned} & y_{i} \geq 0 \\ & y_{i} \leq 0 \\ & y_{i} \in \mathbb{R} \end{aligned}$
	$\begin{aligned} & x_{j} \geq 0 \\ & x_{j} \leq 0 \\ & x_{j} \in \mathbb{R} \end{aligned}$	jth constraint has $\begin{aligned} & \geq \\ & \leq \\ &=\end{aligned}$

Outline

1. Derivation and Motivation

2. Theory

Symmetry

The dual of the dual is the primal:

Primal problem:

$$
\begin{aligned}
\max \quad z & =c^{T} x \\
A x & \leq b \\
x & \geq 0
\end{aligned}
$$

Let's put the dual in the standard form
Dual problem:

$$
\begin{aligned}
\min b^{T} y & \equiv-\max -b^{T} y \\
-A^{T} y & \leq-c \\
y & \geq 0
\end{aligned}
$$

Dual Problem:

$$
\begin{aligned}
\min w & =b^{T} y \\
A^{T} y & \geq c \\
y & \geq 0
\end{aligned}
$$

Dual of Dual:

$$
\begin{aligned}
-\min & -c^{T} x \\
-A x & \geq-b \\
x & \geq 0
\end{aligned}
$$

Weak Duality Theorem

As we saw the dual produces upper bounds. This is true in general:
Theorem (Weak Duality Theorem)
Given:

$$
\begin{aligned}
& \text { (P) } \max \left\{\boldsymbol{c}^{\top} \boldsymbol{x} \mid A \boldsymbol{x} \leq \boldsymbol{b}, \boldsymbol{x} \geq 0\right\} \\
& \text { (D) } \min \left\{\boldsymbol{b}^{T} \boldsymbol{y} \mid A^{T} \boldsymbol{y} \geq \boldsymbol{c}, \boldsymbol{y} \geq 0\right\}
\end{aligned}
$$

for any feasible solution x of (P) and any feasible solution y of (D) :

$$
\boldsymbol{c}^{T} \boldsymbol{x} \leq \boldsymbol{b}^{T} \boldsymbol{y}
$$

Proof:
From (D) $c_{j} \leq \sum_{i=1}^{m} y_{i} a_{i j} \forall j$ and from (P) $\sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i} \forall i$
From (D) $y_{i} \geq 0$ and from (P) $x_{j} \geq 0$

$$
\sum_{j=1}^{n} c_{j} x_{j} \leq \sum_{j=1}^{n}\left(\sum_{i=1}^{m} y_{i} a_{i j}\right) x_{j}=\sum_{i=1}^{m}\left(\sum_{j=1}^{n} a_{i j} x_{j}\right) y_{i} \leq \sum_{i=1}^{m} b_{i} y_{i}
$$

Strong Duality Theorem

Due to Von Neumann and Dantzig 1947 and Gale, Kuhn and Tucker 1951.

Theorem (Strong Duality Theorem)
Given:

$$
\begin{aligned}
& \text { (P) } \max \left\{c^{T} x \mid A x \leq b, x \geq 0\right\} \\
& \text { (D) } \min \left\{b^{T} y \mid A^{T} y \geq c, y \geq 0\right\}
\end{aligned}
$$

exactly one of the following occurs:

1. (P) and (D) are both infeasible
2. (P) is unbounded and (D) is infeasible
3. (P) is infeasible and (D) is unbounded
4. (P) has feasible solution, then let an optimal be: $x^{*}=\left[x_{1}^{*}, \ldots, x_{n}^{*}\right]$
(D) has feasible solution, then let an optimal be: $\boldsymbol{y}^{*}=\left[y_{1}^{*}, \ldots, y_{m}^{*}\right]$, then:

$$
\boldsymbol{c}^{T} \boldsymbol{x}^{*}=\boldsymbol{b}^{T} \boldsymbol{y}^{*}
$$

Proof:

- all other combinations of 3 possibilities (Optimal, Infeasible, Unbounded) for (P) and 3 for (D) are ruled out by weak duality theorem.
- we use the simplex method. (Other proofs independent of the simplex method exist, eg, Farkas Lemma and convex polyhedral analysis)
- The last row of the final tableau will give us

$$
\begin{align*}
z & =z^{*}+\sum_{k=1}^{n+m} \bar{c}_{k} x_{k}=z^{*}+\sum_{j=1}^{n} \bar{c}_{j} x_{j}+\sum_{i=1}^{m} \bar{c}_{n+i} x_{n+i} \tag{*}\\
& =z^{*}+\bar{c}_{B} x_{B}+\bar{c}_{N} x_{N}
\end{align*}
$$

In addition, $z^{*}=\sum_{j=1}^{n} c_{j} x_{j}^{*}$ (c_{j}, original values) because optimal value

- We define $y_{i}^{*}=-\bar{c}_{n+i}, i=1,2, \ldots, m$
- We claim that $\left(y_{1}^{*}, y_{2}^{*}, \ldots, y_{m}^{*}\right)$ is a dual feasible solution satisfying $c^{\top} x^{*}=b^{\top} y^{*}$.
- Let's verify the claim:

We substitute in (*): i) $z=\sum_{j=1}^{n} c_{j} x_{j}$; ii) $\bar{c}_{n+i}=-y_{i}^{*}$; and iii) $x_{n+i}=b_{i}-\sum_{j=1}^{n} a_{i j} x_{j}$ for $i=1,2, \ldots, m$ ($n+i$ are the slack variables)

$$
\begin{aligned}
\sum_{j=1}^{n} c_{j} x_{j} & =z^{*}+\sum_{j=1}^{n} \bar{c}_{j} x_{j}-\sum_{i=1}^{m} y_{i}^{*}\left(b_{i}-\sum_{j=1}^{n} a_{i j} x_{j}\right) \\
& =\left(z^{*}-\sum_{i=1}^{m} y_{i}^{*} b_{i}\right)+\sum_{j=1}^{n}\left(\bar{c}_{j}+\sum_{i=1}^{m} a_{i j} y_{i}^{*}\right) x_{j}
\end{aligned}
$$

This must hold for every $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ hence:

$$
\begin{aligned}
z^{*} & =\sum_{i=1}^{m} b_{i} y_{i}^{*} \\
c_{j} & =\bar{c}_{j}+\sum_{i=1}^{m} a_{i j} y_{i}^{*}, j=1,2, \ldots, n
\end{aligned} \quad \Longrightarrow y^{*} \text { satisfies } c^{T} x^{*}=b^{T} y^{*}
$$

Since $\bar{c}_{k} \leq 0$ for every $k=1,2, \ldots, n+m$:

$$
\begin{aligned}
\bar{c}_{j} & \leq 0 \rightsquigarrow & c_{j}-\sum_{i=1}^{m} y_{i}^{*} a_{i j} \leq 0 \rightsquigarrow & \sum_{i=1}^{m} y_{i}^{*} a_{i j} \geq c_{j}
\end{aligned} \quad j=1,2, \ldots, n g
$$

$\Longrightarrow y^{*}$ is also dual feasible solution

Complementary Slackness Theorem

Theorem (Complementary Slackness)
A feasible solution x^{*} for (P)
A feasible solution y^{*} for (D)
Necessary and sufficient conditions for optimality of both:

$$
\left(c_{j}-\sum_{i=1}^{m} y_{i}^{*} a_{i j}\right) x_{j}^{*}=0, \quad j=1, \ldots, n
$$

If $x_{j}^{*} \neq 0$ then $\sum y_{i}^{*} a_{i j}=c_{j}$ (no surplus)
If $\sum y_{i}^{*} a_{i j}>c_{j}$ then $x_{j}^{*}=0$

Proof:

$$
z^{*}=\boldsymbol{c}^{T} \boldsymbol{x}^{*} \leq \boldsymbol{y}^{*} A \boldsymbol{x}^{*} \leq \boldsymbol{b}^{T} \boldsymbol{y}^{*}=w^{*}
$$

Hence from strong duality theorem:

$$
c x^{*}-y^{*} A x^{*}=0
$$

$$
\text { Hence each term must be }=0
$$

Proof in scalar form:

$$
\begin{aligned}
& c_{j} x_{j}^{*} \leq\left(\sum_{i=1}^{m} a_{i j} y_{i}^{*}\right) x_{j}^{*} \quad j=1,2, \ldots, n \quad \text { from feasibility in D } \\
& \left(\sum_{j=1}^{n} a_{i j} x_{j}^{*}\right) y_{i}^{*} \leq b_{i} y_{i}^{*} \quad i=1,2, \ldots, m \quad \text { from feasibility in P }
\end{aligned}
$$

Summing in j and in i :

$$
\sum_{j=1}^{n} c_{j} x_{j}^{*} \leq \sum_{j=1}^{n}\left(\sum_{i=1}^{m} a_{i j} y_{i}^{*}\right) x_{j}^{*}=\sum_{i=1}^{m}\left(\sum_{j=1}^{n} a_{i j} x_{j}^{*}\right) y_{i}^{*} \leq \sum_{i=1}^{m} b_{i} y_{i}^{*}
$$

For the strong duality theorem the left hand side is equal to the right hand side and hence all inequalities become equalities.

$$
\sum_{j=1}^{n}(\underbrace{c_{j}-\sum_{i=1}^{m} y_{i}^{*} a_{i j}}_{\leq 0}) \underbrace{x_{j}^{*}}_{\geq 0}=0
$$

Economic Interpretation of Duality Theory

$$
\begin{aligned}
& \max 5 x_{0}+6 x_{1}+8 x_{2} \\
& 6 x_{0}+5 x_{1}+10 x_{2} \leq 60 \\
& 8 x_{0}+4 x_{1}+4 x_{2} \leq 40 \\
& 4 x_{0}+5 x_{1}+6 x_{2} \leq 50 \\
& x_{0}, x_{1}, x_{2} \geq 0
\end{aligned}
$$

final tableau:

$$
\begin{array}{rccc}
x 0 & x 1 \times 2 & s 1 & s 2 \\
0 & s 3 & -z & b \\
- & 0 & 5 & 5 \\
1 & 0 & 0 & 7 \\
0 & 0 & 1 & 2 \\
-\overline{-1} / 5 & 0 & 0 & -\overline{1} / 5 \\
\hline & 0 & -\overline{1} & -62
\end{array}
$$

- Which values have the variables, the reduced costs, the shadow prices (or marginal prices), the dual variables?
- If one slack variable >0 then overcapacity: $s_{2}=2$ then the second constraint is not tight
- How many products can be produced at most? at most m
- How much more expensive a product not selected should be?
look at reduced costs: $c_{j}+\pi a_{j}>0$
- What is the value of extra capacity of manpower? In +1 out $+1 / 5$

Economic Interpretation of Duality Theory

Game: Suppose two economic operators:

- P owns the factory and produces goods
- D is in the market buying and selling raw material and resources
- D asks P to close and sell him/her all resources
- P considers if the offer is convenient
- D wants to spend least possible
- y are prices that D offers for the resources
- $\sum y_{i} b_{i}$ is the amount D has to pay to have all resources of P
- $\sum y_{i} a_{i j} \geq c_{j}$ total value to make $j>$ price per unit of product
- P either sells all resources $\sum y_{i} a_{i j}$ or produces product $j\left(c_{j}\right)$
- without \geq there would not be negotiation because P would be better off producing and selling
- at optimality the situation is indifferent (strong th.)
- resource 2 that was not totally utilized in the primal has been given value 0 in the dual. (complementary slackness th.) Plausible, since we do not use all the resource, likely to place not so much value on it.
- for product $0 \sum y_{i} a_{i j}>c_{j}$ hence not profitable producing it. (complementary slackness th.)

Duality - Summary

- Derivation:
- Economic Interpretation
- Bounding Approach
- Multiplier Approach
- Recipe
- Lagrangian Multipliers Approach (next time)
- Theory:
- Symmetry
- Weak Duality Theorem
- Strong Duality Theorem
- Complementary Slackness Theorem

