DM545/DM871 Linear and Integer Programming

> Lecture 6 More on Duality

Marco Chiarandini

Department of Mathematics & Computer Science University of Southern Denmark

Outline

Derivation Dual Simplex Sensitivity Analysis

1. Derivation Lagrangian Duality

2. Dual Simplex

3. Sensitivity Analysis

Summary

Derivation Dual Simplex Sensitivity Analysis

- Derivation:
 - 1. economic interpretation
 - 2. bounding
 - 3. multipliers
 - 4. recipe
 - 5. Lagrangian
- Theory:
 - Symmetry
 - Weak duality theorem
 - Strong duality theorem
 - Complementary slackness theorem
- Dual Simplex
- Sensitivity Analysis, Economic interpretation

Outline

Derivation Dual Simplex Sensitivity Analysis

1. Derivation

Lagrangian Duality

2. Dual Simplex

3. Sensitivity Analysis

Outline

Derivation Dual Simplex Sensitivity Analysis

1. Derivation Lagrangian Duality

2. Dual Simplex

3. Sensitivity Analysis

Lagrangian Duality

Derivation Dual Simplex Sensitivity Analysis

Relaxation: if a problem is hard to solve then find an easier problem resembling the original one that provides information in terms of bounds. Then, search for the strongest bounds.

 $\begin{array}{rl} \min 13x_1 + 6x_2 + 4x_3 + 12x_4 \\ 2x_1 + 3x_2 + 4x_3 & + & 5x_4 = 7 \\ 3x_1 + & + 2x_3 & + & 4x_4 = 2 \\ & & x_1, x_2, x_3, x_4 \ge 0 \end{array}$

We wish to reduce to a problem easier to solve, ie:

$$\min c_1 x_1 + c_2 x_2 + \ldots + c_n x_n$$
$$x_1, x_2, \ldots, x_n \ge 0$$

solvable by inspection: if $c_j < 0$ then $x_j = +\infty$, if $c_j \ge 0$ then $x_j = 0$. Measure of violation of the constraints:

$$7 - (2x_1 + 3x_2 + 4x_3 + 5x_4) 2 - (3x_1 + + 2x_3 + 4x_4)$$

We relax these measures in obj. function with Lagrangian multipliers y_1 , y_2 . We obtain a family of problems:

$$PR(y_1, y_2) = \min_{x_1, x_2, x_3, x_4 \ge 0} \begin{cases} 13x_1 + 6x_2 + 4x_3 + 12x_4 \\ +y_1(7 - 2x_1 - 3x_2 - 4x_3 - 5x_4) \\ +y_2(2 - 3x_1 - 2x_3 - 4x_4) \end{cases}$$

- 1. for all $y_1, y_2 \in \mathbb{R}$: opt $(PR(y_1, y_2)) \leq opt(P)$
- 2. $\max_{y_1,y_2 \in \mathbb{R}} \{ \operatorname{opt}(PR(y_1, y_2)) \} \le \operatorname{opt}(P)$

PR is easy to solve.

(It can be also seen as a proof of the weak duality theorem)

Derivation

Dual Simplex Sensitivity Analysis

$$PR(y_1, y_2) = \min_{\substack{x_1, x_2, x_3, x_4 \ge 0 \\ x_1, x_2, x_3, x_4 \ge 0}} \begin{cases} (13 - 2y_1 - 3y_2) x_1 \\ + (6 - 3y_1) x_2 \\ + (4 - 4y_1 - 2y_2) x_3 \\ + (12 - 5y_1 - 4y_2) x_4 \\ + 7y_1 + 2y_2 \end{cases}$$

if coefficient of x is <0 then bound is $-\infty$ then LB is useless

$$\begin{array}{l} (13 - 2y_1 - 3y_2) \geq 0 \\ (6 - 3y_1 \quad) \geq 0 \\ (4 - 4y_1 - 2y_2) \geq 0 \\ (12 - 5y_1 - 4y_2) \geq 0 \end{array}$$

If they all hold then we are left with $7y_1 + 2y_2$ because all go to 0.

General Formulation

Derivation Dual Simplex Sensitivity Analysis

$$\begin{array}{ll} \min \quad z = \boldsymbol{c}^{T} \boldsymbol{x} \qquad \boldsymbol{c} \in \mathbb{R}^{n} \\ A \boldsymbol{x} = \boldsymbol{b} \qquad & A \in \mathbb{R}^{m \times n}, \boldsymbol{b} \in \mathbb{R}^{m} \\ \boldsymbol{x} \geq 0 \qquad & \boldsymbol{x} \in \mathbb{R}^{n} \end{array}$$

$$\max_{\mathbf{y}\in\mathbb{R}^{m}} \{\min_{\mathbf{x}\in\mathbb{R}^{n}_{+}} \{\mathbf{c}^{T}\mathbf{x} + \mathbf{y}^{T}(\mathbf{b} - A\mathbf{x})\}\}$$
$$\max_{\mathbf{y}\in\mathbb{R}^{m}} \{\min_{\mathbf{x}\in\mathbb{R}^{n}_{+}} \{(\mathbf{c}^{T} - \mathbf{y}^{T}A)\mathbf{x} + \mathbf{y}^{T}\mathbf{b}\}\}$$

$$\max \begin{array}{c} \boldsymbol{b}^{\mathsf{T}} \boldsymbol{y} \\ \boldsymbol{A}^{\mathsf{T}} \boldsymbol{y} \\ \boldsymbol{y} \in \mathbb{R}^{m} \end{array} \leq \boldsymbol{c}$$

Outline

Derivation Dual Simplex Sensitivity Analysis

1. Derivation Lagrangian Duality

2. Dual Simplex

3. Sensitivity Analysis

Dual Simplex

• Dual simplex (Lemke, 1954): apply the simplex method to the dual problem and observe what happens in the primal tableau:

$$\max\{c^{T}x \mid Ax \le b, x \ge 0\} = \min\{b^{T}y \mid A^{T}y \ge c^{T}, y \ge 0\}$$
$$= -\max\{-b^{T}y \mid -A^{T}y \le -c^{T}, y \ge 0\}$$

• We obtain a new algorithm for the primal problem: the dual simplex It corresponds to the primal simplex applied to the dual

Primal Simplex on Dual Problem

Derivation Dual Simplex Sensitivity Analysis

Primal:

• Initial tableau

| x1 | x2 | w1 | w2 | w3 | -z | b ----+ -2 0 1 | 0 | 0 | -8 0 1 1 | 3 0 0 -7 0 0 | 0 1 1 1 0 1

infeasible start

• x_1 enters, w_2 leaves

Dual:

$$\begin{array}{rl} \min & 4y_1 - 8y_2 - 7y_3 \\ & -2y_1 - 2y_2 - y_3 \geq -1 \\ & -y_1 + 4y_2 + 3y_3 \geq -1 \\ & y_1, y_2, y_3 \geq 0 \end{array}$$

• Initial tableau (min
$$by \equiv -max - by$$
)

	-+-		.+.		+		+		-+-		.+.		++		-1
1	Ι	2	T	2	T	1	T	1	T	0	Ι	0	Т	1	T
1	Ι	1	Τ	-4	T	-3	T	0	Τ	1	Ι	0	Т	1	L
+++++++															
1	Τ	-4	I	8	I	7	I	0	I	0	I	1	I	0	Τ

feasible start (thanks to $-x_1 - x_2$)

• y₂ enters, z₁ leaves

• x_1 enters, w_2 leaves

1		x1	T	x2	Т	w1	Ι	w2	Ι	wЗ	T	-z	Ι	Ъ	
++++++															
1		0	T	-5	Т	1	Ι	-1	Ι	0	T	0	Ι	12	
1	1	1	Ι	-2	T	0	Ι	-0.5	Ι	0	Ι	0	Ι	4	
I.		0	Ι	1	T	0	Ι	-0.5	Ι	1	T	0	Ι	-3	
++++++															
I.		0	Ι	-3	T	0	Ι	-0.5	Ι	0	T	1	Ι	4	

• w_2 enters, w_3 leaves

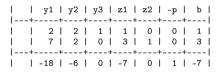
1	Τ	x1	T	x2	T	w1	I	w2	Т	wЗ	Т	-z	Т	b	L
+++++															
1	Τ	0	T	-7	T	1	Ι	0	Т	-2	Т	0	Т	18	L
1	Ι	1	Τ	-3	T	0	T	0	Т	-1	L	0	Т	7	L
1	Ι	0	T	-2	T	0	Ι	1	Т	-2	L	0	Т	6	L
+++++															
1	Ι	0	T	-4	T	0	I	0	Т	-1	Т	1	Т	7	L

(note that we kept $c_j < 0$, ie, optimality)

• y_2 enters, z_1 leaves

	1	Ι	y1	T	y2	Т	yЗ	Ι	z1	Т	z2	T	-p	T	b	I
++++++															I.	
	1	Ι	1	T	1	T	0.5	Ι	0.5	T	0	Ι	0	T	0.5	I
	1	Ι	5	T	0	T	-1	Ι	2	T	1	Ι	0	T	3	I
++++++																
	1	Ι	-4	T	0	T	3	Ι	-12	T	0	Ι	1	Ι	-4	L

• y_3 enters, y_2 leaves



Dual Simplex on Primal Problem

Primal simplex on primal problem:

1. pivot > 0

2. col c_j with wrong sign

3. row: min
$$\left\{ \frac{b_i}{a_{ij}} : a_{ij} > 0, i = 1, .., m \right\}$$

Dual simplex on primal problem:

1. pivot < 0

2. row $b_i < 0$ (condition of feasibility)

3. col: min $\left\{ \left| \frac{c_j}{a_{ij}} \right| : a_{ij} < 0, j = 1, 2, .., n + m \right\}$ (least worsening solution)

- Primal works with feasible solutions towards optimality
- Dual works with optimal solutions towards feasibility

Dual Simplex

- 1. (primal) simplex on primal problem (the one studied so far)
- 2. Now: dual simplex on primal problem \equiv primal simplex on dual problem (implemented as dual simplex, understood as primal simplex on dual problem)

Uses of the Dual Simplex:

- The dual simplex can work better than the primal in some cases. Eg. since running time in practice between 2m and 3m, then if m = 99 and n = 9 then better the dual
- Infeasible start Dual based Phase I algorithm (Dual-primal algorithm)

Dual based Phase I

Derivation Dual Simplex Sensitivity Analysis

Example:

 $\begin{array}{ll} \mbox{maximize} & z = x_1 - x_2 \\ \mbox{subject to} & x_1 + x_2 \leq 2 \\ & 2x_1 + 2x_2 \geq 2 \\ & x_1, x_2 \geq 0 \end{array}$

Summary

Derivation Dual Simplex Sensitivity Analysis

- Derivation:
 - 1. bounding
 - 2. multipliers
 - 3. recipe
 - 4. Lagrangian
- Theory:
 - Symmetry
 - Weak duality theorem
 - Strong duality theorem
 - Complementary slackness theorem
- Dual Simplex
- Sensitivity Analysis, Economic interpretation

Outline

Derivation Dual Simplex Sensitivity Analysis

1. Derivation Lagrangian Duality

2. Dual Simplex

3. Sensitivity Analysis

Sensitivity Analysis aka Postoptimality Analysis

Instead of solving each modified problem from scratch, exploit results obtained from solving the original problem.

$$\max\{\boldsymbol{c}^{\mathsf{T}}\boldsymbol{x} \mid A\boldsymbol{x} = \boldsymbol{b}, \boldsymbol{l} \leq \boldsymbol{x} \leq \boldsymbol{u}\}$$
(*)

- (I) changes to coefficients of objective function: $\max\{\tilde{c}^T x \mid Ax = b, l \le x \le u\}$ (primal) x^* of (*) remains feasible hence we can restart the simplex from x^*
- (II) changes to RHS terms: $\max\{c^T x \mid Ax = \tilde{b}, l \le x \le u\}$ (dual) x^* optimal feasible solution of (*) basic sol \bar{x} of (II): $\bar{x}_N = x_N^*$, $A_B \bar{x}_B = \tilde{b} - A_N \bar{x}_N$ \bar{x} is dual feasible and we can start the dual simplex from there. If \tilde{b} differs from b only slightly it may be we are already optimal.

(III) introduce a new variable:

$$\begin{array}{ll} \max & \displaystyle \sum_{j=1}^{6} c_{j} x_{j} \\ & \displaystyle \sum_{j=1}^{6} a_{ij} x_{j} = b_{i}, \ i = 1, \ldots, 3 \\ & \displaystyle l_{j} \leq x_{j} \leq u_{j}, \ j = 1, \ldots, 6 \\ & \displaystyle [x_{1}^{*}, \ldots, x_{6}^{*}] \ \text{feasible} \end{array}$$

(IV) introduce a new constraint:

$$\sum_{j=1}^{6} a_{4j} x_j = b_4$$
$$\sum_{j=1}^{6} a_{5j} x_j = b_5$$
$$l_j \le x_j \le u_j \qquad \qquad j = 7,8$$

$$\begin{array}{ll} \max & \sum_{j=1}^{7} c_{j} x_{j} \\ & \sum_{j=1}^{7} a_{ij} x_{j} = b_{i}, \ i = 1, \dots, 3 \\ & l_{j} \leq x_{j} \leq u_{j}, \ j = 1, \dots, 7 \\ & [x_{1}^{*}, \dots, x_{6}^{*}, 0] \ \text{feasible} \end{array}$$

(dual)

 $[x_{1}^{*}, \dots, x_{6}^{*}] \text{ optimal}$ $[x_{1}^{*}, \dots, x_{6}^{*}, x_{7}^{*}, x_{8}^{*}] \text{dual feasible}$ $x_{7}^{*} = b_{4} - \sum_{j=1}^{6} a_{4j} x_{j}^{*}$ $x_{8}^{*} = b_{5} - \sum_{j=1}^{6} a_{5j} x_{j}^{*}$

Examples

Derivation Dual Simplex Sensitivity Analysis

(I) Variation of reduced costs:

 $\begin{array}{rrrr} \max \, 6x_1 \, + \, 8x_2 \\ 5x_1 \, + \, 10x_2 \, \leq \, 60 \\ 4x_1 \, + \, 4x_2 \, \, \leq \, 40 \\ x_1, x_2 \, \geq \, 0 \end{array}$

The last tableau gives the possibility to estimate the effect of variations

$$\begin{array}{c} x_{1} x_{2} x_{3} x_{4} - z \ b \\ x_{3} 5 10 1 0 0 60 \\ x_{4} 4 4 0 1 0 0 60 \\ \hline x_{4} 4 4 0 1 0 0 0 \\ \hline x_{5} 10 1 1/5 - 1/4 0 2 \\ \hline x_{1} x_{2} x_{3} x_{4} - z \ b \\ \hline x_{2} 0 1 1/5 - 1/4 0 2 \\ \hline x_{1} 1 0 - 1/5 1/2 0 8 \\ \hline 0 0 - 2/5 - 1 1 - 64 \end{array}$$

For a variable in basis the perturbation goes unchanged in the red. costs. Eg:

$$\max{(6+\delta)x_1 + 8x_2} \implies \bar{c}_1 = 1(6+\delta) - \frac{2}{5} \cdot 5 - 1 \cdot 4 = \delta$$

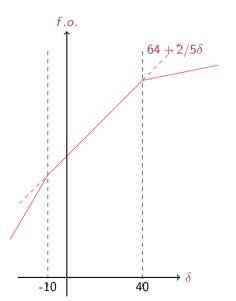
then need to bring in canonical form and hence δ changes the obj value. For a variable not in basis, if it changes the sign of the reduced cost \implies worth bringing in basis \implies the δ term propagates to other columns

(II) Changes in RHS terms

(It would be more convenient to augment the second. But let's take $\epsilon = 0$.) If $60 + \delta \Longrightarrow$ all RHS terms change and we must check feasibility Which are the multipliers for the first row? $k_1 = \frac{1}{5}, k_2 = -\frac{1}{4}, k_3 = 0$ I: $1/5(60 + \delta) - 1/4 \cdot 40 + 0 \cdot 0 = 12 + \delta/5 - 10 = 2 + \delta/5$ II: $-1/5(60 + \delta) + 1/2 \cdot 40 + 0 \cdot 0 = -60/5 + 20 - \delta/5 = 8 - 1/5\delta$ Risk that RHS becomes negative Eg: if $\delta = -10 \Longrightarrow$ tableau stays optimal but not feasible \Longrightarrow apply dual simplex

Graphical Representation

Derivation Dual Simplex Sensitivity Analysis



(III) Add a variable

$$\begin{array}{rl} \max 5x_0 + 6x_1 + 8x_2 \\ 6x_0 + 5x_1 + 10x_2 \leq 60 \\ 8x_0 + 4x_1 + 4x_2 \leq 40 \\ x_0, x_1, x_2 \geq 0 \end{array}$$

Reduced cost of x_0 ? $c_j + \sum \pi_i a_{ij} = +1 \cdot 5 - \frac{2}{5} \cdot 6 + (-1)8 = -\frac{27}{5}$

To make worth entering in basis:

- increase its cost
- decrease the technological coefficient in constraint II: $5 2/5 \cdot 6 a_{20} > 0$

(IV) Add a constraint

 $\begin{array}{rrrr} \max \, 6x_1 \, + \, 8x_2 \\ 5x_1 \, + \, 10x_2 \, \leq \, 60 \\ 4x_1 \, + \, 4x_2 \, \leq \, 40 \\ 5x_1 \, + \, \, 6x_2 \, \leq \, 50 \\ x_1, x_2 \, \geq \, 0 \end{array}$

Final tableau not in canonical form, need to iterate with dual simplex

(V) change in a technological coefficient:

- first effect on its column
- \bullet then look at \emph{c}
- finally look at **b**

Relevance of Sensistivity Analysis

Derivation Dual Simplex Sensitivity Analysis

- The dominant application of LP is mixed integer linear programming.
- In this context it is extremely important being able to begin with a model instantiated in one form followed by a sequence of problem modifications
 - row and column additions and deletions,
 - variable fixings

interspersed with resolves

Summary

Derivation Dual Simplex Sensitivity Analysis

- Derivation:
 - 1. economic interpretation
 - 2. bounding
 - 3. multipliers
 - 4. recipe
 - 5. Lagrangian
- Theory:
 - Symmetry
 - Weak duality theorem
 - Strong duality theorem
 - Complementary slackness theorem
- Dual Simplex
- Sensitivity Analysis, Economic interpretation