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Formulations
RelaxationsUncapacited Facility Location (UFL)

Given:
• depots N = {1, . . . , n}
• clients M = {1, . . . ,m}
• fj fixed cost to use depot j
• transport cost for all orders cij

Task: Which depots to open and which depots serve
which client

Variables: yj =

{
1 if depot opened

0 otherwise
, xij fraction of demand of i satisfied by j

Objective:

min
∑
i∈M

∑
j∈N

cijxij +
∑
j∈N

fjyj

Constraints:
n∑

j=1

xij = 1 ∀i = 1, . . . ,m

∑
i∈M

xij ≤ myj ∀j ∈ N
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Formulations
RelaxationsGood and Ideal Formulations

Definition (Formulation)

A polyhedron P ⊆ Rn+p is a formulation for a set X ⊆ Zn × Rp if and only if X = P ∩ (Zn × Rp)

That is, if it does not leave out any of the solutions of the feasible region X .

There are infinite formulations

Definition (Convex Hull)

Given a set X ⊆ Zn the convex hull of X is defined as:

conv(X ) =
{
x : x =

t∑
i=1

λix i ,

t∑
i=1

λi = 1, λi ≥ 0, for i = 1, . . . , t,

for all finite subsets {x1, . . . , x t} of X
}
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Formulations
Relaxations

Proposition

conv(X ) is a polyhedron (ie, representable as Ax ≤ b)

Proposition

Extreme points of conv(X ) all lie in X

Hence:

max{cTx : x ∈ X} ≡ max{cTx : x ∈ conv(X )}
However it might require exponential number of inequalities to describe conv(X )
What makes a formulation better than another?

X ⊆ conv(X ) ⊆ P2 ⊂ P1

P2 is better than P1

Definition
Given a set X ⊆ Rn and two formulations P1 and P2 for X , P2 is a better formulation than P1 if
P2 ⊂ P1
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Formulations
Relaxations

Example

P1 = UFL with
∑

i∈M xij ≤ myj ∀j ∈ N
P2 = UFL with xij ≤ yj ∀i ∈ M, j ∈ N

P2 ⊂ P1

• P2 ⊆ P1 because summing xij ≤ yj over i ∈ M we obtain
∑

i∈M xij ≤ myj

• P2 ⊂ P1 because there exists a point in P1 but not in P2: m = 6 = 3 · 2 = k · n
x10 = 1, x20 = 1, x30 = 1,
x41 = 1, x51 = 1, x61 = 1

∑
i xi0 ≤ 6y0 y0 = 1/2∑
i xi1 ≤ 6y1 y1 = 1/2
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Formulations
RelaxationsOptimality and Relaxation

z = max{c(x) : x ∈ X ⊆ Zn}

How can we prove that x∗ is optimal?
z is UB
z is LB
stop when z − z ≤ ε

z

z

z

• Primal bounds (here lower bounds): every feasible solution gives a primal bound,
it may be easy or hard to find, heuristics

• Dual bounds (here upper bounds): Relaxations

Optimality gap (SCIP):

• If primal and dual bound have opposite signs, the gap is "Infinity".
• If primal and dual bound have the same sign, the gap is

|pb − db|
min(|pb|, |db|)|

decreases monotonously during the solving process.
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Formulations
Relaxations

Proposition

Given: (IP) z = max{c(x) : x ∈ X ⊆ Rn}
a relaxation of it is: (RP) zR = max{f (x) : x ∈ T ⊆ Rn} if:

(i) X ⊆ T or
(ii) f (x) ≥ c(x) ∀x ∈ X

In other terms:

max
x∈T

f (x) ≥
{
maxx∈T c(x)
maxx∈X f (x)

}
≥ max

x∈X
c(x)

• T : candidate solutions;
• X ⊆ T feasible solutions;
• f (x) ≥ c(x) ∀x ∈ X
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Formulations
RelaxationsRelaxations

How to construct relaxations?

1. IP : max{cTx : x ∈ P ∩ Zn}, P = {x ∈ Rn : Ax ≤ b}
LP : max{cTx : x ∈ P}
Better formulations give better bounds (P1 ⊆ P2)

Proposition

(i) If a relaxation LP is infeasible, the original problem IP is infeasible.
(ii) Let x∗ be optimal solution for LP. If x∗ ∈ X and f (x∗) = c(x∗) then x∗ is optimal for IP.

2. Combinatorial relaxations to easy problems that can be solved rapidly
Eg: TSP to Assignment problem Eg: Symmetric TSP to 1-tree
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Formulations
Relaxations

3. Lagrangian relaxation

IP : z = max{cTx : Ax ≤ b, x ∈ X ⊆ Zn}
LR : z(u) = max{cTx + u(b − Ax) : x ∈ X}

z(u) ≥ z ∀u ≥ 0

4. Duality:

Definition
Two problems:

z = max{c(x) : x ∈ X} w = min{w(u) : u ∈ U}

form a weak-dual pair if c(x) ≤ w(u) for all x ∈ X and all u ∈ U.
When z = w they form a strong-dual pair
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Proposition

z = max{cTx : Ax ≤ b, x ∈ Zn
+} and wLP = min{uTb : ATu ≥ c ,u ∈ Rm

+}
(ie, dual of linear relaxation) form a weak-dual pair.

Proposition

Let IP and D be weak-dual pair:
(i) If D is unbounded, then IP is infeasible
(ii) If x∗ ∈ X and u∗ ∈ U satisfy c(x∗) = w(u∗) then x∗ is optimal for IP and u∗ is optimal for D.

The advantage is that we do not need to solve an LP like in the LP relaxation to have a bound,
any feasible dual solution gives a bound.
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Formulations
RelaxationsExamples

Weak pairs:
Matching: z = max{1Tx : Ax ≤ 1, x ∈ Zm

+}
V. Covering: w = min{1Ty : AT y ≥ 1, y ∈ Zn

+}

Proof: consider LP relaxations, then z ≤ zLP = wLP ≤ w .
(strong when graphs are bipartite)

Weak pairs:
S. Packing: z = max{1Tx : Ax ≤ 1, x ∈ Zn

+}
S. Covering: w = min{1Ty : ATy ≥ 1, y ∈ Zm

+}
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