DM545/DM871 Linear and Integer Programming

Lecture 9 IP Modeling Formulations, Relaxations

Marco Chiarandini

Department of Mathematics & Computer Science University of Southern Denmark

Formulations Relaxations

1. Formulations

Uncapacited Facility Location Alternative Formulations

1. Formulations

Uncapacited Facility Location Alternative Formulations

Formulations Relaxations

1. Formulations

Uncapacited Facility Location

Alternative Formulations

Uncapacited Facility Location (UFL)

Formulations Relaxations

Given:

- depots $N = \{1, \ldots, n\}$
- clients $M = \{1, \ldots, m\}$
- f_j fixed cost to use depot j
- transport cost for all orders c_{ij}

Variables:
$$y_j = \begin{cases} 1 & \text{if depot opened} \\ 0 & \text{otherwise} \end{cases}$$

Objective:
 $\min \sum_{i \in M} \sum_{j \in N} c_{ij} x_{ij} + \sum_{j \in N} f_j y_j$

Constraints:

 $\sum_{j=1}^n x_{ij} = 1$ $\sum_{i \in M} x_{ij} \le m y_j$ $\ensuremath{\mathsf{Task:}}$ Which depots to open and which depots serve which client

 x_{ij} fraction of demand of *i* satisfied by *j*

$$\forall i = 1, \ldots, m$$

$$\forall j \in N$$

1. Formulations

Uncapacited Facility Location Alternative Formulations

Good and Ideal Formulations

Definition (Formulation)

A polyhedron $P \subseteq \mathbb{R}^{n+p}$ is a formulation for a set $X \subseteq \mathbb{Z}^n \times \mathbb{R}^p$ if and only if $X = P \cap (\mathbb{Z}^n \times \mathbb{R}^p)$

That is, if it does not leave out any of the solutions of the feasible region X.

There are infinite formulations

Definition (Convex Hull)

Given a set $X \subseteq \mathbb{Z}^n$ the convex hull of X is defined as:

$$\operatorname{conv}(X) = \left\{ \mathbf{x} : \mathbf{x} = \sum_{i=1}^{t} \lambda_i \mathbf{x}^i, \qquad \sum_{i=1}^{t} \lambda_i = 1, \qquad \lambda_i \ge 0, \qquad \text{for } i = 1, \dots, t, \right.$$
for all finite subsets $\{\mathbf{x}^1, \dots, \mathbf{x}^t\}$ of X

Proposition

conv(X) is a polyhedron (ie, representable as $Ax \leq b$)

Proposition

Extreme points of conv(X) all lie in X

Hence:

 $\max\{\boldsymbol{c}^{\mathsf{T}}\boldsymbol{x}:\boldsymbol{x}\in X\}\equiv\max\{\boldsymbol{c}^{\mathsf{T}}\boldsymbol{x}:\boldsymbol{x}\in\operatorname{conv}(X)\}$

However it might require exponential number of inequalities to describe conv(X) What makes a formulation better than another?

 $X \subseteq \operatorname{conv}(X) \subseteq P_2 \subset P_1$

 P_2 is better than P_1

Definition

Given a set $X \subseteq \mathbb{R}^n$ and two formulations P_1 and P_2 for X, P_2 is a better formulation than P_1 if $P_2 \subset P_1$

Example

 $\begin{array}{l} P_1 = \mathsf{UFL} \text{ with } \sum_{i \in M} x_{ij} \leq m y_j \quad \forall j \in N \\ P_2 = \mathsf{UFL} \text{ with } x_{ij} \leq y_j \quad \forall i \in M, j \in N \end{array}$

 $P_2 \subset P_1$

- $P_2 \subseteq P_1$ because summing $x_{ij} \leq y_j$ over $i \in M$ we obtain $\sum_{i \in M} x_{ij} \leq my_j$
- $P_2 \subset P_1$ because there exists a point in P_1 but not in P_2 : $m = 6 = 3 \cdot 2 = k \cdot n$ $x_{10} = 1, x_{20} = 1, x_{30} = 1,$ $x_{41} = 1, x_{51} = 1, x_{61} = 1$ $\sum_i x_{i0} \le 6y_0 \ y_0 = 1/2$ $\sum_i x_{i1} \le 6y_1 \ y_1 = 1/2$

Formulations Relaxations

1. Formulations

Uncapacited Facility Location Alternative Formulations

Formulations Relaxations

Optimality and Relaxation

 $z = \max\{c(\boldsymbol{x}) : \boldsymbol{x} \in X \subseteq \mathbb{Z}^n\}$

How can we prove that x^* is optimal? \overline{z} is UB \underline{z} is LB stop when $\overline{z} - \underline{z} \leq \epsilon$

- Primal bounds (here lower bounds): every feasible solution gives a primal bound, it may be easy or hard to find, heuristics
- Dual bounds (here upper bounds): Relaxations

Optimality gap (SCIP):

- If primal and dual bound have opposite signs, the gap is "Infinity".
- If primal and dual bound have the same sign, the gap is

 $\frac{|pb-db|}{\min(|pb|,|db|)|}$

decreases monotonously during the solving process.

Proposition

Given: (IP) $z = \max\{c(\mathbf{x}) : \mathbf{x} \in X \subseteq \mathbb{R}^n\}$ a relaxation of it is: (RP) $z^R = \max\{f(\mathbf{x}) : \mathbf{x} \in T \subseteq \mathbb{R}^n\}$ if: (i) $X \subseteq T$ or (ii) $f(\mathbf{x}) \ge c(\mathbf{x}) \ \forall \mathbf{x} \in X$

In other terms:

$$\max_{\mathbf{x}\in\mathcal{T}} f(\mathbf{x}) \geq \left\{ \max_{\mathbf{x}\in\mathcal{T}} c(\mathbf{x}) \\ \max_{\mathbf{x}\in\mathcal{X}} f(\mathbf{x}) \\ \right\} \geq \max_{\mathbf{x}\in\mathcal{X}} c(\mathbf{x})$$

- T: candidate solutions;
- $X \subseteq T$ feasible solutions;
- $f(\mathbf{x}) \geq c(\mathbf{x}) \, \forall \mathbf{x} \in X$

Relaxations

How to construct relaxations?

1. $IP : \max\{c^T x : x \in P \cap \mathbb{Z}^n\}, \quad P = \{x \in \mathbb{R}^n : Ax \le b\}$ $LP : \max\{c^T x : x \in P\}$ Better formulations give better bounds $(P_1 \subseteq P_2)$

Proposition

(i) If a relaxation LP is infeasible, the original problem IP is infeasible.

(ii) Let x^* be optimal solution for LP. If $x^* \in X$ and $f(x^*) = c(x^*)$ then x^* is optimal for IP.

2. Combinatorial relaxations to easy problems that can be solved rapidly Eg: TSP to Assignment problem Eg: Symmetric TSP to 1-tree

3. Lagrangian relaxation

IP:
$$z = \max\{c^T x : Ax \le b, x \in X \subseteq \mathbb{Z}^n\}$$
LR: $z(u) = \max\{c^T x + u(b - Ax) : x \in X\}$

 $z(\boldsymbol{u}) \geq z \qquad \forall \boldsymbol{u} \geq 0$

4. Duality:

Definition

Two problems:

 $z = \max\{c(\boldsymbol{x}) : \boldsymbol{x} \in X\} \qquad w = \min\{w(\boldsymbol{u}) : \boldsymbol{u} \in U\}$

form a weak-dual pair if $c(x) \le w(u)$ for all $x \in X$ and all $u \in U$. When z = w they form a strong-dual pair

Proposition

 $z = \max\{c^T x : Ax \leq b, x \in \mathbb{Z}_+^n\}$ and $w^{LP} = \min\{u^T b : A^T u \geq c, u \in \mathbb{R}_+^m\}$ (ie, dual of linear relaxation) form a weak-dual pair.

Proposition

Let IP and D be weak-dual pair:

(i) If D is unbounded, then IP is infeasible

(ii) If $\mathbf{x}^* \in X$ and $\mathbf{u}^* \in U$ satisfy $c(\mathbf{x}^*) = w(\mathbf{u}^*)$ then \mathbf{x}^* is optimal for IP and \mathbf{u}^* is optimal for D.

The advantage is that we do not need to solve an LP like in the LP relaxation to have a bound, any feasible dual solution gives a bound.

Examples

Weak pairs:

Matching: $z = \max\{1^T \boldsymbol{x} : A \boldsymbol{x} \le 1, \boldsymbol{x} \in \mathbb{Z}_+^m\}$ V. Covering: $w = \min\{1^T \boldsymbol{y} : A^T \boldsymbol{y} \ge 1, \boldsymbol{y} \in \mathbb{Z}_+^n\}$

Proof: consider LP relaxations, then $z \le z^{LP} = w^{LP} \le w$. (strong when graphs are bipartite)

Weak pairs:

- S. Packing: $z = \max\{1^T \mathbf{x} : A\mathbf{x} \leq 1, \mathbf{x} \in \mathbb{Z}^n_+\}$
- S. Covering: $w = \min\{1^T \boldsymbol{y} : A^T \boldsymbol{y} \ge 1, \boldsymbol{y} \in \mathbb{Z}_+^m\}$