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z = min
∑
ij∈A

cijxij∑
j :ij∈A

xij −
∑
j :ji∈A

xji = 1 for i = s (πs)∑
j :ij∈A

xij −
∑
j :ji∈A

xji = 0 ∀i ∈ V \ {s, t} (πi )∑
j :ij∈A

xij −
∑
j :ji∈A

xji = −1 for i = t (πt)

xij ≥ 0 ∀ij ∈ A

Dual problem:

gLP = max πs − πt

πi − πj ≤ cij ∀ij ∈ A

Hence, the shortest path can be found by potential values πi on nodes such that πs = z , πt = 0
and πi − πj ≤ cij for ij ∈ A
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Adding a backward arc from t to s:

z = max xts∑
j :ji∈A

xij −
∑
j :ij∈A

xji = 0 ∀i ∈ V (πi )

xij ≤ uij ∀ij ∈ A (wij)

xij ≥ 0 ∀ij ∈ A

Dual problem:

gLP = min
∑
ij∈A

uijwij

πi − πj + wij ≥ 0 ∀ij ∈ A

πt − πs ≥ 1

wij ≥ 0 ∀ij ∈ A
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gLP = min
∑
ij∈A

uijwij (1)

πi − πj + wij ≥ 0 ∀ij ∈ A (2)
πt − πs ≥ 1 (3)

wij ≥ 0 ∀ij ∈ A (4)

• Without (3) all potentials would go to 0.
• Keep w low because of objective function
• Keep all potentials low ⇝ (3) πs = 0, πt = 1
• Cut C : on left =1 on right =0. Where is the transition?
• Vars w identify the cut ⇝ πj − πi + wij ≥ 0 ⇝ wij = 1

wij =

{
1 if ij ∈ C

0 otherwise

for those arcs that minimize the cut capacity
∑

ij∈A uijwij

• Complementary slackness: wij = 1 =⇒ xij = uij
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Theorem

A strong dual to the max (st)-flow is the minimum (st)-cut problem:

min
X

 ∑
ij∈A:i∈X ,j ̸∈X

uij : s ∈ X ⊂ V \ {t}


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Optimality Condition

• Ford Fulkerson augmenting path algorithm O(m|x∗|)

• Edmonds-Karp algorithm (augment by shortest path) in O(nm2)

• Dinic algorithm in layered networks O(n2m)

• Karzanov’s push relabel O(n2m)
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min
∑
ij∈A

cijxij∑
j :ij∈A

xij −
∑
j :ji∈A

xji = bi ∀i ∈ V (πi )

xij ≤ uij ∀ij ∈ A (wij)

xij ≥ 0 ∀ij ∈ A

Dual problem:

max
∑
i∈V

biπi −
∑
ij∈E

uijwij (1)

−cij + πi − πj ≤ wij ∀ij ∈ E (2)

wij ≥ 0 ∀ij ∈ A (3)

11



Duality
Network Simplex
Final Remarks

xe1 xe2 . . . xij . . . xem
ce1 ce2 . . . cij . . . cem

1 1 . . . . . . . . . = b1

2 . . . . . . . . . . = b2
...

...
. . . =

...
i −1 . . . . 1 . . . . = bi
...

...
. . . =

...
j . . . . . −1 . . . . = bj
...

...
. . . =

...
n . . . . . . . . . . = bn
e1 1 ≤ u1

e2 1 ≤ u2
...

...
. . . ≤

...
(i , j) 1 ≤ uij

...
...

. . . ≤
...

em 1 ≤ um

12



• When is the set of feasible solutions x ,πππ,w optimal?

• define reduced costs c̄ij = cij − πi + πj , hence (2) becomes −c̄ij ≤ wij

• ue = ∞ then we = 0 (from obj. func) and c̄ij ≥ 0 (from 2)

• ue < ∞ then we ≥ 0 and we ≥ −c̄ij then we = max{0,−c̄ij}, hence we is determined by
others and irrelevant

• Complementary slackness th. for optimal solutions:
each primal variable × the corresponding dual slack must be equal 0, ie, xe(c̄e + we) = 0;

• xe > 0 then −c̄e = we = max{0,−c̄e},
xe > 0 =⇒ −c̄e ≥ 0 or equivalently (by negation) c̄e > 0 =⇒ xe = 0

each dual variable × the corresponding primal slack must be equal 0, ie, we(xe − ue) = 0;
• we > 0 then xe = ue

−c̄e > 0 =⇒ xe = ue or equivalently c̄e < 0 =⇒ xe = ue

Hence:
c̄e > 0 then xe = 0
c̄e < 0 then xe = ue ̸= ∞
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The conditions derived can be used to define a solution approach for the minimum cost flow
problem.

Directed cycle ≡ circuit

Note that if a set of potentials πi , i ∈ V are given, and the cost of a circuit wrt. the reduced costs
for the edges (c̄ij = cij + πj − πi ) are calculated, the cost remains the same as the original costs
because the potentials are “telescoped” to 0.

Theorem (Optimality conditions)

Let x be feasible flow in N(V ,A, l ,u,b) then x is min cost flow in N iff N(x) contains no directed
cycle of negative cost.

Note that a (directed) circuit with negative cost in N(x) corresponds to a negative cost cycle in N,
if costs are added for forward edges and subtracted for backward edges.

• Cycle canceling algorithm with Bellman Ford Moore for negative cycles O(nm2UC ),
U = max |ue |, C = max |ce |

• Build up algorithms O(n2mM), M = max |b(v)|
14
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• A is not full-rank: adding all rows ⇝ null vector, i.e., the rows of A are not linearly indep.

• Since we assume that total supply equal total demand, i.e.,
∑

i∈V bi = 0 then
rank[A] = rank[A b].

• Hence, one of the equations can be canceled. 16
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• assume network N is connected

• cycle: here, a set of arcs forming a closed path (i.e., a path in which the first and the last node
of the path coincide) when ignoring their orientation

• spanning tree: here, a tree that reaches every node (it coincides with the classical notion of
spanning tree if one disregards arc orientation).

Theorem (Spanning Trees)

For an undirected graph D ′ = (N,A′), the following are equivalent:
(a) G ′ = (N,E ) is a tree (acyclic and connected);
(b) G ′ = (N,E ) is acyclic and has n − 1 arcs; and
(c) G ′ = (N,E ) is connected and has n − 1 arcs.
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Since we know that the matrix A is not full-rank, a basis of A consists of only n − 1 linearly
independent columns of A. These columns correspond to a collection of arcs of the flow network.

Theorem
Given a connected flow network, letting A be its incidence matrix, a submatrix B of size
(n − 1)× (n − 1) is a basis of A if and only if the arcs associated with the columns of B form a
spanning tree.

Proof:
if columns from A correspond to a spanning tree =⇒ they are lin. indep., B is upper triangular
if a subset of columns of A are a basis =⇒ they are n − 1 and acyclic

Hence, all basic feasible solutions explored by the simplex algorithm are spanning trees of the flow
network.
As for any LP, also in min-cost flow problems there are feasible, infeasible and degenerate bases.
(feasible if xB = A−1

B b ≥ 0).
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• solve BxB = b in value of variables to check feasibility; easy because of structure or because
done by updates.

• solve πTB = cT
B in π (dual potential variables to derive reduced costs); easy because of

structure of B.

• calculate c̄ij = cij + πj − πi
21
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How much can we increase the flow θ through
(54)?
Until (32) reaches zero
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• It can be proved that, because the basis corresponds to a tree, the equations can always be
solved by simple substitution.

• The order of substitution can always be found by “walking around the tree”.

• Efficient implementations further reduce the cost of determining π by updating it as they walk
around the tree, rather than computing it anew at each iteration.

• When the network simplex steps are to be carried out by a computer, it is not so obvious how

• A few concise and clever data structures are used to represent the basis tree in a way that
allows the walk around the tree and finding the circuit induced by the entering arc efficiently.

• The data structures can themselves be efficiently updated as the tree changes from iteration
to iteration.
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• DM817 Netværksprogrammering: Teori og anvendelser (10 ECTS, efterår)

⇝ DM841 Heuristikker og constraint programmering for diskret optimering (10 ECTS, efterår)

• DM867 Kombinatorisk optimering (10 ECTS, forår)

⇝ DM872 Matematisk optimering i praksis (5 ECTS, forår)

⇝ AI505 Optimization (7.5 ECTS + IAAI501 2.5 ECTS, forår)

⇝ DM879 Kunstig intelligens (10 ECTS, forår)
DS8XX Introduction to Artificial Intelligence (10 ECTS)
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https://mitsdu.dk/da/mit_studie/kandidat/matematik-oekonomi_kandidat/uddannelsens-opbygning/
forslag_til_studieprogrammer

• Microeconometrics (10 ECTS, efterår)

• DM872 Matematisk optimering i praksis (5 ECTS, efterår)

• DM878 Visualisering (5 ECTS, efterår)

• MM856 Grafteori (10 ECTS, efterår)

• DM870 Data mining and machine learning (10 ECTS, forår)

• DM887 Reinforcement learning (10 ECTS, forår)

• AI505+ IAAI501 Optimering (7.5 + 2.5 ECTS, forår)

• 30 ECTS valgfag

• 30 ECTS kandidatspeciale
27
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• Ideas for student projects:
https://imada.sdu.dk/u/march/Blog/references/2022/04/20/projects.html

• But you can also come with your ideas
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