DM545/DM871 Linear and Integer Programming

Lecture 13 Network Flows, Cntd

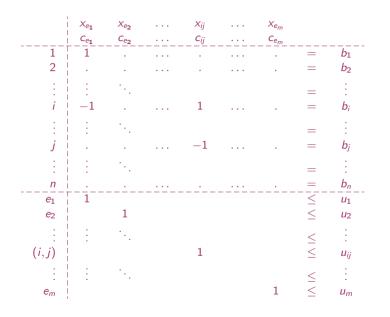
Marco Chiarandini

Department of Mathematics & Computer Science University of Southern Denmark

1. Duality in Network Flow Problems

2. Network Simplex

3. Final Remarks



1. Duality in Network Flow Problems

2. Network Simplex

3. Final Remarks

Shortest Path - Dual LP

 $z = \min \sum c_{ij} x_{ij}$ ii∈A $\sum x_{ij} - \sum x_{ji} = 1$ for i = s (π_s) $i:ii\in A$ $j:ji\in A$ $\sum x_{ij} - \sum x_{ji} = 0$ $\forall i \in V \setminus \{s, t\}$ (π_i) $i:ii \in A$ $i:ii \in A$ $\sum x_{ij} - \sum x_{ji} = -1$ for i = t (π_t) $i:ii \in A$ $i:ii \in A$ $x_{ii} > 0$ $\forall ii \in A$

Dual problem:

$$g^{LP} = \max \pi_s - \pi_t$$

 $\pi_i - \pi_j \le c_{ij}$ $\forall ij \in$

Hence, the shortest path can be found by potential values π_i on nodes such that $\pi_s = z, \pi_t = 0$ and $\pi_i - \pi_j \leq c_{ij}$ for $ij \in A$

A

Duality Network Simplex Final Remarks

Maximum (s, t)-Flow

Adding a backward arc from t to s:

$$z = \max \quad x_{ts}$$

$$\sum_{j:ji \in A} x_{ij} - \sum_{j:ij \in A} x_{ji} = 0 \qquad \forall i \in V \qquad (\pi_i)$$

$$x_{ij} \leq u_{ij} \qquad \forall ij \in A \qquad (w_{ij})$$

$$x_{ij} \geq 0 \qquad \forall ij \in A$$

Dual problem:

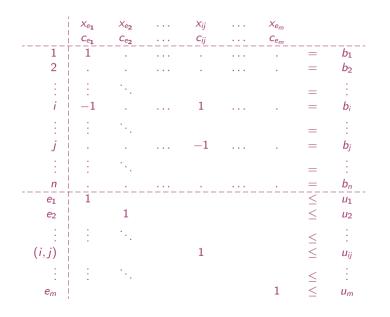
$$egin{aligned} g^{LP} &= \min \sum_{ij \in A} u_{ij} w_{ij} \ \pi_i &- \pi_j + w_{ij} \geq 0 \ \pi_t &- \pi_s \geq 1 \ w_{ij} \geq 0 \end{aligned}$$

 $\forall ij \in A$

 $\forall ij \in A$

Duality

Network Simplex Final Remarks



$$g^{LP} = \min \sum_{ij \in A} u_{ij} w_{ij}$$

$$\pi_i - \pi_j + w_{ij} \ge 0$$

$$\pi_t - \pi_s \ge 1$$

$$w_{ij} \ge 0$$

$$\forall ij \in A$$

$$\forall ij \in A$$

$$(1)$$

- Without (3) all potentials would go to 0.
- Keep w low because of objective function
- Keep all potentials low \rightsquigarrow (3) $\pi_s = 0, \pi_t = 1$
- Cut C: on left =1 on right =0. Where is the transition?
- Vars w identify the cut $\rightsquigarrow \pi_j \pi_i + w_{ij} \ge 0 \rightsquigarrow w_{ij} = 1$

$$w_{ij} = egin{cases} 1 & \textit{if } ij \in C \ 0 & \textit{otherwise} \end{cases}$$

for those arcs that minimize the cut capacity $\sum_{ij \in A} u_{ij} w_{ij}$

• Complementary slackness: $w_{ij} = 1 \implies x_{ij} = u_{ij}$

Theorem

A strong dual to the max (st)-flow is the minimum (st)-cut problem:

$$\min_{X} \left\{ \sum_{ij \in A: i \in X, j \notin X} u_{ij} : s \in X \subset V \setminus \{t\} \right\}$$

Optimality Condition

- Ford Fulkerson augmenting path algorithm $O(m|x^*|)$
- Edmonds-Karp algorithm (augment by shortest path) in $O(nm^2)$
- Dinic algorithm in layered networks $O(n^2m)$
- Karzanov's push relabel $O(n^2m)$

11

Duality Network Simplex Final Remarks

Min Cost Flow - Dual LP

$$\begin{array}{c} \min\sum_{ij\in A} c_{ij}x_{ij} \\ \sum\limits_{j:ij\in A} x_{ij} - \sum\limits_{j:ji\in A} x_{ji} = b_i \\ x_{ij} \leq u_{ij} \\ x_{ij} \leq 0 \end{array} \qquad \forall i \in V \qquad (\pi_i) \\ \forall ij \in A \qquad (w_{ij}) \\ \forall ij \in A \end{array}$$

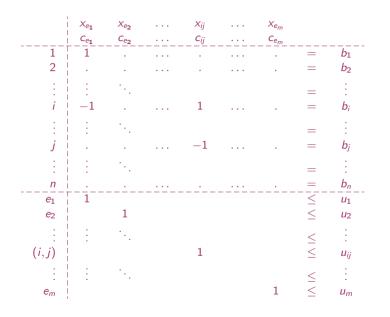
Dual problem:

$$\max \sum_{i \in V} b_i \pi_i - \sum_{ij \in E} u_{ij} w_{ij}$$
(1)
$$-c_{ij} + \pi_i - \pi_j \le w_{ij} \qquad \forall ij \in E \qquad (2)$$

$$w_{ij} \ge 0 \qquad \forall ij \in A \qquad (3)$$

Duality

Network Simplex Final Remarks



- When is the set of feasible solutions x, π, w optimal?
- define reduced costs $\bar{c}_{ij} = c_{ij} \pi_i + \pi_j$, hence (2) becomes $-\bar{c}_{ij} \leq w_{ij}$
- $u_e = \infty$ then $w_e = 0$ (from obj. func) and $\bar{c}_{ij} \ge 0$ (from 2)
- $u_e < \infty$ then $w_e \ge 0$ and $w_e \ge -\bar{c}_{ij}$ then $w_e = \max\{0, -\bar{c}_{ij}\}$, hence w_e is determined by others and irrelevant
- Complementary slackness th. for optimal solutions:
 each primal variable × the corresponding dual slack must be equal 0, ie, x_e(c
 _e + w_e) = 0;
 - $x_e > 0$ then $-\bar{c}_e = w_e = \max\{0, -\bar{c}_e\}$,

 $x_e > 0 \implies -ar{c}_e \geq 0$ or equivalently (by negation) $ar{c}_e > 0 \implies x_e = 0$

each dual variable × the corresponding primal slack must be equal 0, ie, $w_e(x_e - u_e) = 0$;

• $w_e > 0$ then $x_e = u_e$

 $-ar{c}_e > 0 \implies x_e = u_e$ or equivalently $ar{c}_e < 0 \implies x_e = u_e$

Hence:

 $ar{c}_e > 0$ then $x_e = 0$ $ar{c}_e < 0$ then $x_e = u_e
eq \infty$

Min Cost Flow Algorithms

The conditions derived can be used to define a solution approach for the minimum cost flow problem.

Directed cycle \equiv circuit

Note that if a set of potentials $\pi_i, i \in V$ are given, and the cost of a circuit wrt. the reduced costs for the edges $(\bar{c}_{ij} = c_{ij} + \pi_j - \pi_i)$ are calculated, the cost remains the same as the original costs because the potentials are "telescoped" to 0.

Theorem (Optimality conditions)

Let x be feasible flow in N(V, A, I, u, b) then x is min cost flow in N iff N(x) contains no directed cycle of negative cost.

Note that a (directed) circuit with negative cost in N(x) corresponds to a negative cost cycle in N, if costs are added for forward edges and subtracted for backward edges.

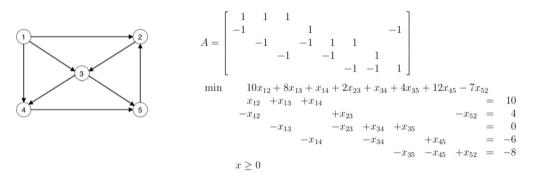
- Cycle canceling algorithm with Bellman Ford Moore for negative cycles $O(nm^2UC)$, $U = \max |u_e|$, $C = \max |c_e|$
- Build up algorithms $O(n^2 m M)$, $M = \max |b(v)|$

1. Duality in Network Flow Problems

2. Network Simplex

3. Final Remarks

Min Cost Flow



- A is not full-rank: adding all rows \rightsquigarrow null vector, i.e., the rows of A are not linearly indep.
- Since we assume that total supply equal total demand, i.e., $\sum_{i \in V} b_i = 0$ then rank[A] = rank[A **b**].
- Hence, one of the equations can be canceled.

- assume network *N* is connected
- cycle: here, a set of arcs forming a closed path (i.e., a path in which the first and the last node of the path coincide) when ignoring their orientation
- spanning tree: here, a tree that reaches every node (it coincides with the classical notion of spanning tree if one disregards arc orientation).

Theorem (Spanning Trees)

For an undirected graph D' = (N, A'), the following are equivalent: (a) G' = (N, E) is a tree (acyclic and connected); (b) G' = (N, E) is acyclic and has n - 1 arcs; and (c) G' = (N, E) is connected and has n - 1 arcs. Since we know that the matrix A is not full-rank, a basis of A consists of only n - 1 linearly independent columns of A. These columns correspond to a collection of arcs of the flow network.

Theorem

Given a connected flow network, letting A be its incidence matrix, a submatrix B of size $(n-1) \times (n-1)$ is a basis of A **if and only if** the arcs associated with the columns of B form a spanning tree.

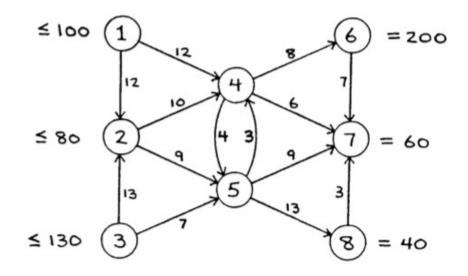
Proof:

```
if columns from A correspond to a spanning tree \implies they are lin. indep., B is upper triangular if a subset of columns of A are a basis \implies they are n-1 and acyclic
```

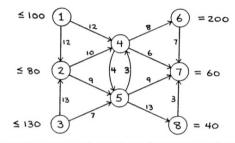
Hence, all basic feasible solutions explored by the simplex algorithm are spanning trees of the flow network.

As for any LP, also in min-cost flow problems there are feasible, infeasible and degenerate bases. (feasible if $\mathbf{x}_B = A_B^{-1} \mathbf{b} \ge 0$).

Example



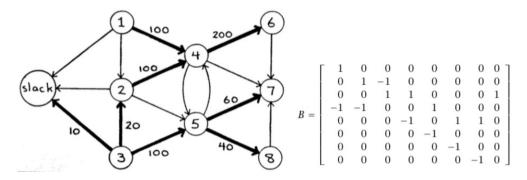
Example



 $12x_{12} + 12x_{14} + 10x_{24} + 9x_{25} + 13x_{32} + 7x_{35} + 4x_{45} + 8x_{46} + 6x_{47} + 3x_{54} + 9x_{57} + 13x_{58} + 7x_{67} + 3x_{87} +$ $+ s_1$ 100 $+ x_{12} +$ X14 80 $+ s_2$ $-x_{12}$ $x_{24} + x_{25} -$ X32 130 $+ x_{32} + x_{35}$ $+ S_3 =$ $- x_{14} - x_{24}$ 0 $+ x_{45} + x_{46} + x_{47} - x_{54}$ = - x₂₅ 0 $- x_{35} - x_{45}$ $+ x_{54} + x_{57} +$ X58 = - x₄₆ = -200 x_{67} - X47 -60- X57 $- x_{67} - x_{87}$ = -40-X58 + X87 =

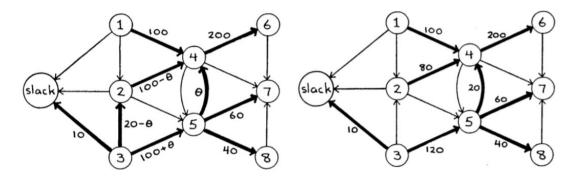
 $x_{12}, x_{14}, x_{24}, x_{25}, x_{32}, x_{35}, x_{45}, x_{46}, x_{47}, x_{54}, x_{57}, x_{58}, x_{67}, x_{87}, s_1, s_2, s_3 \geq 0$

Example



- solve $Bx_B = b$ in value of variables to check feasibility; easy because of structure or because done by updates.
- solve $\pi^T B = c_B^T$ in π (dual potential variables to derive reduced costs); easy because of structure of B.
- calculate $\bar{c}_{ij} = c_{ij} + \pi_j \pi_i$

 $\pi_1 - \pi_4 = 12$ $\pi_2 - \pi_4 = 10$ $\pi_3 - \pi_2 = 13$ $\pi_3 - \pi_5 = 7$ $\pi_4 - \pi_6 = 8$ $\pi_5 - \pi_7 = 9$ $\pi_5 - \pi_8 = 13$ $\pi_{2} = 0$ $\pi_3 = 0$ and $\pi_3 - \pi_5 = 7 \Rightarrow \pi_5 = -7$ $\pi_5 = -7$ and $\pi_5 - \pi_8 = 13 \Rightarrow \pi_8 = -20$ $\pi_5 = -7$ and $\pi_5 - \pi_7 = 9 \Rightarrow \pi_7 = -16$ $\pi_3 = 0$ and $\pi_3 - \pi_2 = 13 \Rightarrow \pi_2 = -13$ $\pi_2 = -13$ and $\pi_2 - \pi_4 = 10 \Rightarrow \pi_4 = -23$ $\pi_4 = -23$ and $\pi_4 - \pi_6 = 8 \Rightarrow \pi_6 = -31$ $\pi_4 = -23$ and $\pi_1 - \pi_4 = 12 \Rightarrow \pi_1 = -11$ $d_{12} = c_{12} - \pi_1 + \pi_2 = 12 - (-11) + (-13) = 10$ $d_{25} = c_{25} - \pi_2 + \pi_5 = 9 - (-13) + (-7) = 15$ $d_{45} = c_{45} - \pi_4 + \pi_5 = 4 - (-23) + (-7) = 20$ $d_{54} = c_{54} - \pi_5 + \pi_4 = 3 - (-7) + (-23) = -13$ $d_{47} = c_{47} - \pi_4 + \pi_7 = 6 - (-23) + (-16) = 13$ $d_{67} = c_{67} - \pi_6 + \pi_7 = 7 - (-31) + (-16) = 22$ $d_{87} = c_{87} - \pi_8 + \pi_7 = 3 - (-20) + (-16) = 7$ $d_1 = 0 - \pi_1 = -(-11) = 11$ $d_2 = 0 - \pi_2 = -(-13) = 13$



How much can we increase the flow θ through (54)? Until (32) reaches zero

- It can be proved that, because the basis corresponds to a tree, the equations can always be solved by simple substitution.
- The order of substitution can always be found by "walking around the tree".
- Efficient implementations further reduce the cost of determining π by updating it as they walk around the tree, rather than computing it anew at each iteration.
- When the network simplex steps are to be carried out by a computer, it is not so obvious how
- A few concise and clever data structures are used to represent the basis tree in a way that allows the walk around the tree and finding the circuit induced by the entering arc efficiently.
- The data structures can themselves be efficiently updated as the tree changes from iteration to iteration.

1. Duality in Network Flow Problems

2. Network Simplex

3. Final Remarks

Other courses in optimization

- DM817 Netværksprogrammering: Teori og anvendelser (10 ECTS, efterår)
- → DM841 Heuristikker og constraint programmering for diskret optimering (10 ECTS, efterår)
- DM867 Kombinatorisk optimering (10 ECTS, forår)
- → DM872 Matematisk optimering i praksis (5 ECTS, forår)
- → AI505 Optimization (7.5 ECTS + IAAI501 2.5 ECTS, forår)
- → DM879 Kunstig intelligens (10 ECTS, forår)
 DS8XX Introduction to Artificial Intelligence (10 ECTS)

MatØk - Operationsanalyse

Duality Network Simplex Final Remarks

https://mitsdu.dk/da/mit_studie/kandidat/matematik-oekonomi_kandidat/uddannelsens-opbygning/ forslag_til_studieprogrammer

- Microeconometrics (10 ECTS, efterår)
- DM872 Matematisk optimering i praksis (5 ECTS, efterår)
- DM878 Visualisering (5 ECTS, efterår)
- MM856 Grafteori (10 ECTS, efterår)
- DM870 Data mining and machine learning (10 ECTS, forår)
- DM887 Reinforcement learning (10 ECTS, forår)
- AI505+ IAAI501 Optimering (7.5 + 2.5 ECTS, forår)
- 30 ECTS valgfag
- 30 ECTS kandidatspeciale

Bachelor and Master projects

Duality Network Simplex Final Remarks

- Ideas for student projects: https://imada.sdu.dk/u/march/Blog/references/2022/04/20/projects.html
- But you can also come with your ideas